Телевизионная система мониторинга

Александр Александров, Сергей Соловьёв

В статье описывается телевизионная система мониторинга объектов различного назначения, которая обеспечивает непрерывный контроль ситуации, создавая тем самым условия для своевременного выявления нештатных ситуаций и сокращения времени на их устранение.

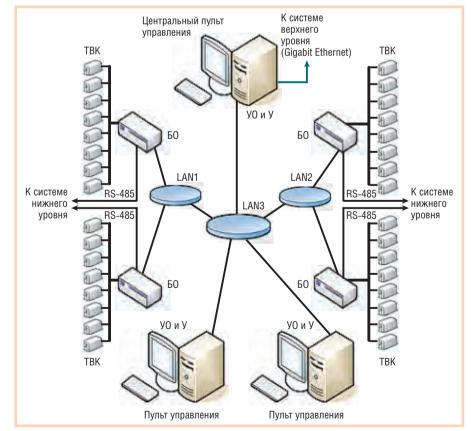
Назначение и решаемые задачи

Телевизионная (ТВ) система мониторинга предназначена для контроля обстановки на объекте (в помещениях, на территориях и т.д.) и обеспечивает выполнение следующих задач:

- видеоконтроль помещений;
- обнаружение нештатных ситуаций (в том числе возгораний, разрушения технических средств, несанкционированных проникновений и т.д.) и выдачу видеоинформации о факте и месте возникновения нештатных ситуаций;
- вычисление динамических параметров развития нештатных ситуаций;
- запись видеоинформации о нештатных ситуациях в архив видеоданных;
- ведение журнала текстовых сообщений:
- формирование звукового и цветового сигналов тревоги;
- отображение места возникновения нештатной ситуации на мнемосхеме;
- видеонаблюдение за ситуацией на объекте (в том числе за действием спасательных формирований);
- документирование текстовых сообщений.

Система мониторинга построена по модульному принципу, что позволяет конфигурировать её для различных типов объектов.

Общая структура и основные подсистемы


При разработке архитектуры системы учитывалось, что система должна обладать высокой производительностью, обеспечивать эффективный анализ изображения, не перегружать каналы связи системы с ограниченной про-

пускной способностью, легко конфигурироваться для различных типов объектов. Структура системы мониторинга показана на рис. 1.

В отличие от обычных ТВ-систем система мониторинга осуществляет предварительный анализ изображений на уровне блоков обработки. Этот анализ проводится с целью обнаружения нештатных ситуаций и выполняется до сжатия изображений и передачи их по сети.

Снижение требований к пропускной способности сетевой инфраструктуры и оптимизация процесса слежения за удалёнными объектами реализуются благодаря тому, что в сеть передаются видеоданные только при возникновении нештатных ситуаций.

Система мониторинга построена как распределённая система на базе ло-кальной вычислительной сети и услов-

Условные обозначения:

ТВК — телевизионные камеры; УО и У — устройства отображения и управления; 60 — блок обработки.

Рис. 1. Структурная схема телевизионной системы мониторинга

но может быть представлена как совокупность следующих подсистем:

- сбора данных;
- обработки данных;
- управления, регистрации и отображения информации;
- энергообеспечения.

Основу подсистемы сбора данных составляют телевизионные камеры (ТВК) и установки телевизионные камерные (УТК), оснащённые при необходимости ИК-прожекторами. В зависимости от требуемых условий наблюдения система комплектуется различными вариантами исполнения ТВК.

Подсистема обработки данных обеспечивает преобразование аналоговых ТВ-сигналов в цифровые сигналы и последующую обработку поступающих видеоданных с целью обнаружения нештатных ситуаций и вычисления их параметров. Эта подсистема включает в себя устройство ввода и устройство обработки, конструктивно объединённые в одном блоке обработки (БО). БО представляет собой промышленную ЭВМ, выполненную в формате CompactPCI на базе одноплатного компьютера СРС501 фирмы Fastwel, и осуществляет обнаружение, обработку, вычисление и классификацию параметров нештатных ситуаций, а также их архивирование.

Подсистема управления обеспечивает приём цифровой ТВ-информации, регистрацию и отображение нештатных ситуаций. Обмен информацией между подсистемами управления и обработки данных осуществляется по каналам вычислительной сети Fast Ethernet 10/100 Мбит/с. Обмен информацией с системами высшего уровня осуществляется по сети Gigabit Ethernet 100/1000 Мбит/с. Подсистема управления включает в себя устройства отображения и управления (УО и У), которые обеспечивают отображение видеоинформации и воспроизведение звуковой информации в системе мониторинга. Конструктивно УО и У выполнены в виде плоскопанельного видеомонитора с размером диагонали 15" или 19" и управляющей ЭВМ, построенной на базе одноплатного компьютера CPC501 фирмы Fastwel.

Подсистема энергообеспечения включает в себя набор устройств, обеспечивающих бесперебойное питание системы мониторинга.

Работа системы мониторинга базируется на принципах управления пространственно разнесёнными средствами.

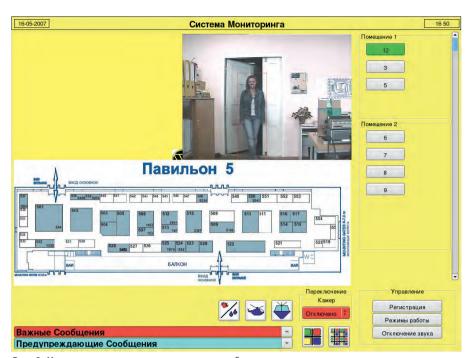


Рис. 2. Мнемосхема пульта управления системой

Программное обеспечение

Программное обеспечение (ПО) системы построено по модульному принципу. С помощью этого ПО решается целый комплекс задач:

- распределение и цифровая обработка ТВ-сигналов;
- обнаружение нештатных ситуаций;
- организация пультовых режимов управления;
- организация обмена информацией по сети системы и с сопрягаемыми системами;
- диагностика аппаратных средств.

ПО пульта управления функционирует в среде Windows NT. Оно состоит из ряда блоков.

- Блок обеспечения доступа к системным средствам:
 - установка уровня доступа к техническим средствам системы;
 - установка паролей и прав пользователей
- Блок конфигурирования системы:
- настройка и конфигурирование системы;
- настройка ТВК;
- настройка детекторов движения;
- управление ИК-прожекторами.
- Блок обработчика событий, обеспечивающий реакцию на сообщения
 БО, а также организующий сообщения для систем верхнего уровня и оператора системы:
 - организация текстовых сообщений и звуковых сигналов для оператора;
- организация обмена данными с другими системами.

После загрузки рабочей программы (после включения питания) на экран монитора устройства управления выводится мнемосхема пульта управления системой (рис. 2). Управляя элементами пульта, оператор осуществляет:

- включение системы;
- необходимые настройки телевизионных камер (настройку уровней яркости и контрастности передаваемых изображений, установку зон детектирования движения, задание пороговых значений параметров обнаружения, включение и отключение ИК-прожекторов и детекторов движения);
- задание режима занесения сообщений в рабочий журнал;
- задание формата и скорости записей в архив;
- задание числа источников видеоданных на входе каждого БО;
- задание формата отчётов по работе
- ввод паролей пользователей.

Прикладное ПО БО функционирует в среде Windows NT. Оно тоже состоит из ряда блоков.

- Блок первичной видеообработки:
 - управление параметрами видеозахвата:
 - функция детектора движения и установки его настройки;
 - функция детектора смещения и установки его параметров;
 - подготовка информации для передачи в устройство управления;
 - настройка параметров видеокамер.
- Блок работы с видеоинформацией:
- видеозахват;

- выделение нештатных ситуаций и подготовка сообщений для передачи на пульт управления.
- Блок архиватора:
 - установка параметров архивирования:
 - внесение информации в архив, просмотр архива;
 - ведение системного журнала.

Архивирование видеоданных системы осуществляется в каждом БО, то есть организуется распределённая база видеоданных. Данные хранятся с индексами: дата, время, номер ТВК, событие и т.д. Всё это позволяет организовать поиск необходимой информации по индексам и по БО одновременно и существенно сократить время поиска.

В системе предусмотрено несколько режимов записи видеоданных в архив:

- по времени (непрерывный, по таймеру);
- по событию;
- по команде оператора.

Все эти режимы задаются программно по каждой ТВК отдельно.

Особенности функциониро-ВАНИЯ СИСТЕМЫ

Основное назначение ТВ-системы мониторинга — осуществлять сортировку текущих событий с целью выделения нештатных ситуаций, их классификации, своевременного предупреждения персонала, а также архивирование процесса развития нештатных ситуаций.

Традиционно процесс фильтрации событий осуществляется оператором системы, то есть ограниченная способность человека концентрировать внимание определяет эффективность работы системы. Известно, что у оператора концентрация внимания существенно падает в течение первого часа работы, кроме того, у оператора снижается эффективность работы по распознаванию событий, если он следит за изображением на 9 камерах, а не на одной. Таким образом, процесс увеличения числа ТВК в системе мониторинга должен сопровождаться применением эффективных детекторов движения, позволяющих распознавать различные нештатные ситуации. В этом случае оператор системы может адекватно реагировать на возникающие нештатные ситуации. Автоматический интеллектуальный анализ видеоизображения позволяет вести более тщательный мониторинг и принимать оперативные решения по реагированию на ситуацию.

Этому же способствует и прогресс в развитии вычислительной техники, который приводит к росту быстродействия и уменьшению габаритов и стоимости процессоров, что позволяет успешно использовать для обнаружения нештатных ситуаций специальные фильтры (детекторы движения).

В отличие от традиционных датчиков, имеющих относительно узкую сферу действия, определяемую реализованными в них физическими принципами, сфера действия детектора движения ограничивается только полем зрения ТВК. Кроме того, использование детекторов движения предоставляет большие возможности по предварительной сортировке событий и их более точной классификации.

Для повышения точности обнаружения нештатных ситуаций в детекторах движения применяется технология отслеживания векторов перемещения обнаруженных объектов, при этом анализу подвергается серия из нескольких последовательных кадров.

В системе используется несколько типов детекторов движения, которые могут дополнять друг друга:

- «Появление объекта» сигнал тревоги генерируется при появлении объекта в выбранной зоне (рис. 3);
- нал тревоги генерируется, виртуальной границы если объект остаётся в пределах выбранной зоны в течение интервала времени, превышающего заданный (рис. 4);
- «Пересечение границы» сигнал тревоги формируется при пересечении заданной виртуальной границы (рис. 5);
- «Изменение фона» − сигнал тревоги формируется при изменении уровня освещённости ниже порогового и при необходимости включает инфракрасную подсветку.

Кроме того, в системе мониторинга предусматривается использование ТВК с аудиоканалом, что позволяет ис-

Рис. 3. Детектирование появления объекта в зоне

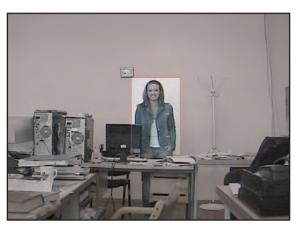


Рис. 4. Детектирование наличия объекта в зоне в течение интервала времени, превышающего заданный

• «Наличие объекта» — сиг- Рис. 5. Детектирование пересечения заданной

пользовать детекторы звука. Детекторы звука формируют сигнал тревоги при превышении установленного порога.

Устройства бесперебойного питания, входящие в состав подсистемы энергообеспечения, предназначены для гарантированного электропитания устройств системы мониторинга при аварийном отключении питающего напряжения на время 9-29 минут. Требуемое количество устройств бесперебойного питания определяется конфигурацией системы мониторинга.

Система мониторинга обеспечивает распознавание нештатных ситуаций в

автоматическом режиме, при этом возникает вопрос о надёжности работы самой системы, то есть о проверке работоспособности отдельных её компонентов. В этой связи система мониторинга имеет в своём составе подсистему диагностики – аппаратные и программные средства, обеспечивающие такую проверку. Подсистема диагностики периодически, через заданные интервалы времени проводит проверку функционирования компонентов системы мониторинга. Результаты диагностики заносятся в журнал проверок; кроме того, при обнаружении любого рода неисправности формируется соответствующее сообщение оператору. Подсистема диагностики имеет несколько уровней проверок и обеспечивает контроль работоспособности как аппаратных, так и программных средств.

Устройство отображения и управления системы мониторинга может выполнять роль системы верхнего уровня, принимающей информацию от других систем сигнализации и контроля.

При взаимодействии с системой пожарной сигнализации (СПС) типа «Гамма» технические средства системы мониторинга обеспечивают вывод информации о состоянии:

- пожарной сигнализации,
- температурно-тревожной сигнализации,
- охранной сигнализации,
- средств автоматического пожаротушения;
- кроме того, осуществляется вывод на экран видеоинформации по сигналам датчиков СПС.

Алгоритмическая обработка информации, поступающей от систем сигнализации и контроля и подсистемы сбора данных, существенно повышает достоверность обнаружения нештатных ситуаций.

При поступлении сообщений «ПО-ЖАР» или «ТРЕВОГА» от системы «Гамма» на систему мониторинга видеоинформация от соответствующей ТВК автоматически записывается в архив.

При взаимодействии с системами верхнего уровня технические средства системы мониторинга обеспечивают вывод сообщений «ТРЕВОГА» или «ВНИМАНИЕ» и соответствующей видеоинформации на пульт управления системы верхнего уровня с указанием времени и места возникновения нештатной ситуации.

Обмен информацией с подсистемами нижнего уровня осуществляется по

стандартному интерфейсу RS-485 в режиме запрос-ответ.

При поступлении тревожных сообщений система мониторинга обеспечивает в автоматическом режиме или по команде оператора запись видеоинформации из помещений, в которых установлены ТВК.

Внешние интерфейсы системы мониторинга:

- 20 портов Fast Ethernet 10/100 Мбит/с;
- по 2 порта RS-485 на каждом блоке обработки;
- 1 порт Gigabit Ethernet 100/1000 Мбит/с.

Преимущества системы

Вместо заключения перечислим основные преимущества представленной системы мониторинга, подтверждённые результатами её испытаний:

- высокая производительность системы, обеспечиваемая тем, что задача анализа информации распределена между БО, а не реализуется на уровне центрального сервера, и тем, что подсистемы обработки и управления построены на базе современных быстродействующих промышленных компьютеров Fastwel CPC501;
- анализ изображения осуществляется до его сжатия, что позволяет изба-

- виться от артефактов компрессии изображений;
- снижение требований к пропускной способности сетевой инфраструктуры, обусловленное рациональным подходом к передаче видеоданных в сеть (предварительная обработка данных осуществляется на уровне БО);
- широкие возможности анализа и поиска видеоданных в распределённом архиве (в каждом БО создаётся свой архив видеоданных; кроме того, доступны различные варианты поиска: по событию, по времени и т.д.);
- достоверность формируемых сообщений, обеспечиваемая многоуровневыми проверками и контролем работоспособности компонентов системы со стороны встроенной подсистемы диагностики;
- возможность применения широкого набора предлагаемых ТВК;
- использование модульного принципа построения системы, обеспечившее снижение затрат на её создание и простоту конфигурирования для различных типов объектов.

Авторы — сотрудники НПО «Прибор» Телефон/факс: (812) 326-0976

