

Автоматизация соляной пещеры

Сергей Шишкин (г. Саров)

В публикации представлена автоматизация соляной пещеры (кабинета для спелеотерапии или галокамеры) с применением многофункционального управляющего устройства ОВЕН ПР200.

В настоящее время в учреждениях санаторно-курортного типа практикуется такой метод лечения, как спелеотерапия. Спелеотерапия относится к известным с древних времён способам лечения при помощи благотворного воздействия соляного климата. Её можно смело назвать естественным, природным способом, не вызывающим осложнений.

Спелеотерапия помогает при целом ряде заболеваний и направляет основное своё действие на активацию защитных механизмов адаптации человека к меняющимся условиям внешней среды. Данный метод лечения основан на положительном влиянии некоторых естественных и искусственных пещер на течение целого ряда заболеваний (органов дыхания, сердечно-сосудистой системы, опорно-двигательного аппарата и других).

После изучения воздействия насыщенного солью воздуха на организм человека был основан новый метод оздоровления при помощи создания искусственным путём атмосферы соляных пещер в специально оборудованных комнатах - галокамерах (спелеокамерах). В них создана атмосфера естественной соляной пещеры, обладающей лечебными свойствами отрицательных ионов и ионов морской соли. Воздух галокамер действует на все системы человеческого организма, сочетая в себе мощное влияние сразу нескольких факторов соляных пещер. Положительный эффект при лечении сухим насыщенным солью воздухом в спелеокамере составляет около 95% у детей и взрослых практически при всех распространённых воспалительных заболеваниях

бронхолёгочной системы. Возможно также успешное лечение этим методом аллергии и ряда кожных болезней.

Галокамера — помещение, укомплектованное приборами и аппаратами, создающими лечебный микроклимат для прохождения процедуры спелеотерапии. Стены и пол в галокамере облицованы морской солью с шероховатой и рельефной поверхностью. Потолок — декоративный, с напылением морской соли и малыми архитектурными формами. На рис. 1 представлен внешний вид галокамеры.

В настоящее время совсем не редкость встретить галокомеры в фитнесцентрах, SPA-салонах, частных гостевых домах. Основные приборы и системы, задействованные при принятии лечебной процедуры в галокамере:

- галогенератор устройство для образования и подачи в галокамеру ионизированной высокодисперсионной аэрозоли;
- музыкальная установка для создания приятного музыкального фона (аудиопроигрыватель);

- цветодинамическая установка;
- приточная вентиляция;
- вытяжная вентиляция;
- измеритель влажности;
- электрический калорифер (тепловая пушка, включает в себя электронагреватель и вентилятор).

Основной прибор в галокамере — галогенератор. На рис. 2 представлен внешний вид ультразвукового галогенератора «Аэровита».

Его основные технические характеристики приведены в табл. 1.

Лечебная процедура в галогамере с ультразвуковым галогенератором выглядит следующим образом. Пациенты размещаются в релаксационных креслах, надев предварительно бахилы, халаты и шапочки. Дверь в галокамере плотно закрывается.

Сеанс начинается с включения галогенератора на 15 минут. Одновременно с ним выключается штатное освещение, включается цветодинамическая установка. Звучит приятная успокаивающая музыка. Мягко загораются и гаснут фонари цветодинамической установки.

Рис. 1. Внешний вид галокамеры

Рис. 2. Внешний вид галогенератора «Аэровита»

Основные характеристики галогенератора «Аэровита»

Nº	Наименование	Значение		
1	Габаритные размеры галогенератора (ширина×высота×глубина), мм	520×605×405		
2	Вес, кг	27		
3	Напряжение питания	220 В, 50 Гц		
4	Потребляемая мощность, В А	80		
5	Тип вещества, используемый для распыления	11,5% р-р морской соли		
6	Мощность нагнетания (мі/ч)	290		
7	Аэрозольная производительность	2Ч6 мл/мин		
8	Рабочая частота, Мгц	2,64 ±1%		
9	Дисперсный состав аэрозоля, мкм	0т 1 до 5		
10	Класс защиты от поражения эл. током	II тип B		
11	Минимальный объём помещения, обслуживаемого одним галогенератором, м ³	35		
12	Дисперсность аэрозоля в зоне размещения пациентов (% от общего количества частиц)	0,51,0 мкм не менее 1,0 1,02,0 мкм не менее 40,0 2,03,0 мкм не менее 40,0 3,04,0 мкм не менее 15,0 4,05,0 мкм не менее 3,5 свыше 5,0 мкм не более 0,5		

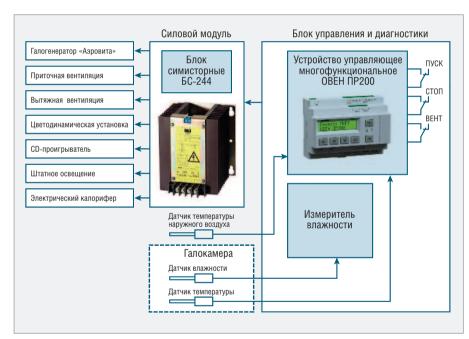


Рис. 3. Функциональная схема системы управления и диагностики галокамеры с ультразвуковым галогенератором

Всё это в целом создаёт атмосферу отдыха и релаксации. Продолжительность сеанса 30-40 мин. За 5 минут до окончания сеанса включается вытяжная вентиляция на 40% мошности (чтобы при открытой двери галокамеры аэрозоль остался в ней же).

После окончания сеанса выключается аудиопроигрыватель, цветодинамическая установка, включается штатное освещение. Пациенты покидают галокамеру. Далее необходимо закрыть дверь галокамеры и включить на полную мощность (100%) вытяжную и приточную вентиляции. Во время сеанса в галокамере контролируется температура и влажность. Все приведённые временные интервалы даны для помещения объёмом $50-60 \text{ м}^3$.

То есть имеется набор приборов и устройств, которыми нужно управлять в определённой последовательности в заданном интервале времени. Функциональная схема системы управления и диагностики галокамеры с ультразвуковым галогенератором, которая реализует вышеуказанный алгоритм работы, представлена на рис. 3.

Блок управления выполнен на базе Таблица 1 функционального устройства ОВЕН

ПР200-24.4.2 (далее - реле ПР200 или ПР200). Его внешний вид приведён на рис. 4.

Фактически ПР200 представляет собой программируемое реле с дисплеем. Прибор предназначен для построения простых автоматизированных систем управления технологическим оборудованием. ПР200 программируется в среде OwenLogic на языке FBD. Пользовательская программа записывается в энергонезависимую Flash-память прибора.

Прибор выпускается согласно ТУ 4252-009-46526536-2015 и поддерживает следующие функции:

- работа по программе, записанной в память:
- работа в сети RS-485 по протоколу Modbus RTU/Modbus ASCII в режиме Master или Slave;
- обработка входных сигналов от датчиков:
- управление подключёнными устройствами с помощью дискретных или аналоговых сигналов:
- отображение данных на ЖКИ;
- ввод и редактирование данных с помошью кнопок на лицевой панели.

ПР200 — это программируемый управляемый автомат с дисплеем, который позволяет посмотреть на дисплее состояние выходов и входов.

При размещении шкафа управления с расположенным в нём ПР200 в учреждении санаторно-курортного типа следует учитывать, что на одной сетевой линии могут быть подключены такие нагрузки, как магнитотурботрон, авантрон и др., которые являются источниками достаточно сильных помех.

ПР200 отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ 30804.6.2-2013.

Рис. 4. Внешний вид реле ПР-200

- а также устойчив к прерываниям, провалам и выбросам напряжения питания:
- для переменного тока в соответствии с требованиями ГОСТ 30804.4.11-2013 (степень жёсткости PS2);
- для постоянного тока в соответствии с требованиями ГОСТ IEC 61131-2-2012 длительность прерывания напряжения питания до 10 мс включительно, длительность интервала от 1 с и более.

Уместно напомнить, что во время эксплуатации, технического обслуживания и поверки ПР-200 следует соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны

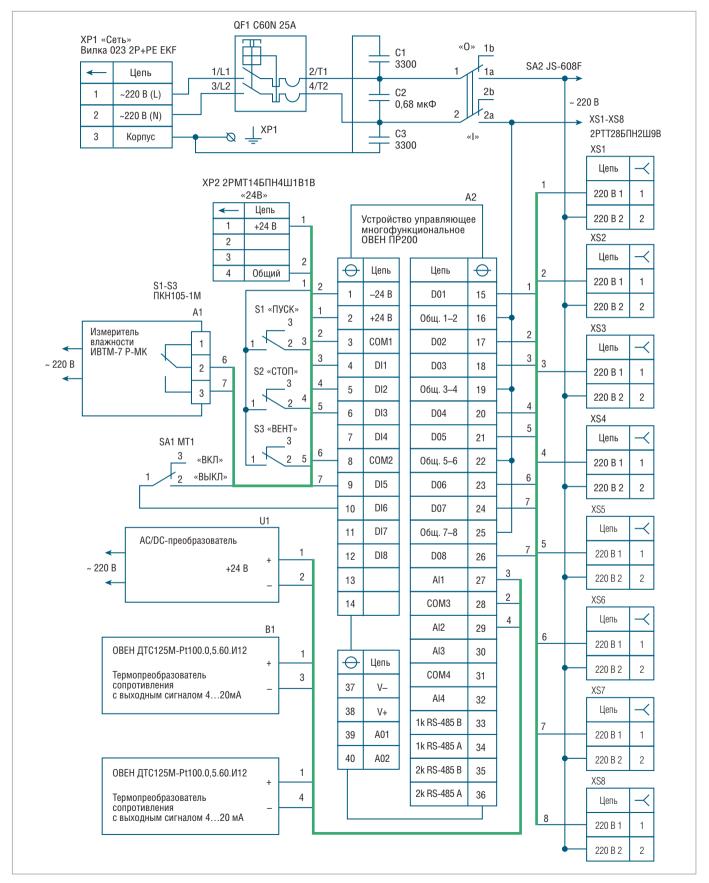


Рис. 5. Принципиальная схема устройства

Типы нагрузок, подключаемых к соединителям ПР-200

Соединитель	XS1	XS2	XS3	XS4	XS5	XS6	XS7	XS8
Нагрузка	Галогенератор	Приточная вентиляция	Вытяжная вентиляция 40% мощности	Вытяжная вентиляция 60% мощности	Цветодинамическая установка	CD-проигрыватель	Штатное освещение	Электрический калорифер

труда при эксплуатации электроустановок». Прибор следует устанавливать в специализированных шкафах, доступных только квалифицированным специалистам.

Принципиальная схема устройства приведена на рис. 5.

На принципиальной схеме нагрузки (технологическое оборудование в галокамере) подключаются непосредственно к ПР200 через соединители XS1...XS8. Допустимый ток нагрузки по каждому каналу реле в ПР200 (дискретный выход DO): 5 А при напряжении не более 250 В переменного тока.

При управлении мощными нагрузками необходимо задействовать мощные симисторные блоки или твердотельные реле. Датчики температуры В1, В2 подключаются к аналоговым входам AI1, AI2 реле ПР200. У него нет входов, к которым подключаются термопреобразователи сопротивления и термопары, поэтому данные датчики подключаются через нормирующий преобразователь с унифицированным выходом (0...10 В; 4...20 мА). Нормирующий преобразователь может быть встроен в первичный датчик. К входу AI1 подключён датчик температуры B1. Он контролирует температуру наружного воздуха. К входу АІ2 подключён датчик температуры В2. Он контролирует внутреннюю текущую температуру в галокамере.

Типы нагрузок, подключаемых к соединителям XS1...XS8, приведены в табл. 2.

Сетевое напряжение поступает на соединитель XP1. Напряжение 24 В поступает на соединитель XP2.

Электрический калорифер подогревает воздух в приточной вентиляции. Его работу определяет тумблер SA1. Электрический калорифер включён, если тумблер SA1 находится в положении «ВКЛ». Если тумблер SA1 находится в положении «ВЫКЛ», то работа электрического калорифера определяется температурой наружного воздуха. Он включается автоматически в зависимости от температуры наружного воздуха. Кнопки S1...S3 имеют следующее функциональное назначение:

- \$1 (ПУСК) переводит устройство в рабочий режим. Функционирование по заданному алгоритму работы;
- S2 (СТОП) стоп, выключение всех исполнительных устройств;
- S3 включает приточно-вытяжную вентиляцию.

Контроль влажности в галокамере осуществляется измерителем влажности (термогигрометром) ИВТМ-7-Щ-2Р (можно заменить на ИВТМ-7 Р-МК-М). Данный измеритель влажности конструктивно состоит из блока измерения и первичного датчика и предназначен для непрерывного (круглосуточного) измерения, регулирования и регистрации относительной влажности и температуры воздуха и других неагрессивных газов. Есть опция измерения температуры. Подробное описание на прибор приведено на сайте изготовителя [3]. Фотография лицевой панели измерителя влажности ИВТМ-7 Р-МК-М представлена на рис. 6.

ИВТМ-7-Щ-2Р, в зависимости от рабочего диапазона измеряемой температуры внешней среды, а также конструктивного исполнения, может комплектоваться целой дюжиной первичных преобразователей типа ИПВТ-03М-ХХ. Первичный преобразователь (измерительный зонд) расположен непосредственно в галокамере. Перед проведением процедуры в измерителе влажности задаётся (программируется) необходимый рабочий диапазон по влажности.

Разработку управляющей программы в среде OWEN Logic рекомендуется начинать после тщательного ознакомления с алгоритмом работы объекта локальной автоматизации и его составных частей. Необходимо иметь представление о всех возможных состояниях ПР при функционировании (в виде диа-

Рис. 6. Лицевая панель измерителя влажности ИВТМ-7 Р-МК-М

граммы режимов, таблицы состояний, электрической или функциональной схемы и/или др.).

После того как продуманы все задачи, которые должны выполняться, необходимо составить программу на основе функций (логических элементов), функциональных блоков, а также макросов проекта. Работа над проектом включает:

- открытие нового проекта весь проект будет храниться в одном файле, которому следует присвоить идентификационное имя;
- 2) формирование структуры текущего проекта, которое рекомендуется выполнять в следующем порядке:
 - из «Библиотеки компонентов» на холст добавить необходимые блоки путём перетаскивания их мышью при нажатой на ней левой кнопке (из соответствующей вкладки «Функции» или «Функциональные блоки»);
 - последовательно выделяя курсором блоки схемы, на закладке «Свойства» установить их параметры;
 - соединить компоненты программы между собой, а также с нужными входами и выходами ПР. При этом допускается передвигать квадраты входов и выходов в вертикальной плоскости для расположения соединительных линий кратчайшей длины;
- 3) моделирование работы коммутационной программы в режиме симуляции. При проверке правильности работы коммутационной программы изменяют состояние входов, контролируя состояние выходов на соответствие нужным условиям;
- 4) загрузка проекта в ПР и проверка его работы.

На рис. 7 приведён скриншот управляющей программы для соляной пещеры в среде OWEN Logic.

Блок формирования временного интервала для работы галогенератора выполнен на элементах RS1, TON1. Блок, выполненный на элементах RS2, TON2, ВLINK1, задаёт работу вытяжной вентиляции (40% мощности), а также цветодинамической установки, аудиот

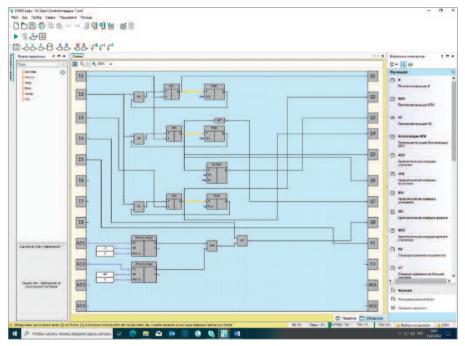


Рис. 7. Скриншот управляющей программы для соляной пещеры в среде OWEN Logic

проигрывателя и штатного освещения. Блок, выполненный на элементах RS3, TON3, задаёт работу приточной и вытяжной вентиляций (100% мощности). Макросы 2PosHisReg1 и 2PosHisReg2 — двухпозиционные регу-

ляторы, управляющие работой электрического калорифера.

Включённый индикатор F1 в ПР200 информирует о превышении верхнего или нижнего порога по влажности в галокамере. Временные интервалы в

программе, а также уставки в двухпозиционных регуляторах можно установить совершенно любые с учётом особенности работы галокамеры. Они зависят от объёма помещения, количества галогенераторов, от конструкции приточно-вытяжной вентиляции и пр.

После разработки коммутационной программы в среде OWEN Logic при её моделировании в режиме симуляции для сокращения времени отладки целесообразно установить масштаб времени для функциональных блоков в секундах. Тогда для представленного устройства рабочий цикл будет всего 40 с. После отладки, конечно, масштаб времени для функциональных блоков лучше установить в минутах и сделать «генеральный» прогон.

ПР200 позволяет быстро организовать достаточно гибкий необходимый алгоритм работы технологического оборудования в галокамере и при необходимости оперативно его изменить с минимальными доработками в аппаратной части. Функциональные возможности ПР200 могут быть расширены с помощью:

- плат расширения ПР-ИП485 (размещаются внутри корпуса прибора);
- модулей расширения (подключаются к интерфейсу модульной шины с помощью кабеля):
 - ПРМ-Х.1 модуль дискретного ввода-вывода;
 - ПРМ-X.2 комбинированный модуль расширения входов-выходов;
 - ПРМ-Х.3 модуль аналогового ввода-вывода.

В вышеуказанных модулях Х – тип питающего напряжения (220 В или 24 В). Например, дополнительно к ПР200 модуль ПРМ-220.1 ПРМ-24.1) может быть применён для реализации следующих дополнительных функций в представленном устройстве: управления воздушной заслонкой в приточной вентиляции и её обогрева в зимнее время или для управления многоступенчатого нагревателя в электрическом калорифере с целью более точного поддержания температуры в галокамере при работе приточной вентиляции.

Надежные контрольно-измерительные системы с длительным сроком доступности

- Помехоустойчивые платы аналогового и цифрового ввода/вывода PCI, PCI Express, CompactPCI, ISA
- Модули управления движением
- Коммуникационные платы для локальных сетей с интерфейсами RS-232, RS-422, RS-485
- Интеллектуальные измерительные Ethernet-системы со степенью защиты IP65

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР

(495) 234-0636 = INFO@PROSOFT.RU = WWW.PROSOFT.RU

Литература

- 1. URL: https://www.contravt.ru.
- 2. URL: https://www.owen.ru.
- 3. URL: https://www.eksis.ru.
- 4. URL: https://аэровита.рф.

WE CONNECT AND PROTECT

Платформа EuropacPRO евромеханика высокого полёта

PROгрессивные блочные каркасы и приборные корпуса

- Безграничное разнообразие конфигураций из унифицированных компонентов
- Современный промышленный дизайн
- Высокая прочность и надёжность
- Доработка под индивидуальные требования

