## Обзор рынка многоканальных терморегуляторов

## Сергей Шишкин (Нижегородская обл.)

В статье представлен обзор отечественного рынка многоканальных измерителей-регуляторов температуры (терморегуляторов).

Терморегуляторы как средство автоматизации глубоко и основательно вошли в жизнь предприятий энергетики, ЖКХ и промышленности. Без них немыслима нормальная жизнь любого города. Отрадно, что на рынке терморегуляторов достаточно широко представлена продукция отечественных производителей и она достаточно конкурентоспособна.

Многоканальные измерители-регуляторы обладают большими функциональными возможностями, чем одноканальные, и предназначены, в основном, для измерения и автоматического регулирования температуры в системах обогрева и охлаждения. Их основными задачами являются:

- многоканальное регулирование температуры;
- регулирование разности температур между каналами;
- работа в режиме двух-, трёхпозиционного или ПИ/ПИД-регулирования температуры;
- сигнализация различных температурных режимов;
- измерение, сигнализация, регулирование температуры в распределённых, автоматизированных системах управления технологическими процессами и т.д.

Главным функциональным узлом в локальной автоматизированной системе обогрева или охлаждения, вокруг которого строится сама система, является регулятор-измеритель. Поэтому основными требованиями, предъявляемыми к терморегуляторам как к средствам автоматизации, являются многофункциональность, возможность интеграции в единую информационную сеть предприятия, надёжность и удобство в работе.

В современных нагревательных (охладительных) системах применяются различные типы регуляторов: позиционные, ПИ-регуляторы и ПИД-регуляторы.

Позиционный - самый распространённый тип регулятора ввиду его простоты при удовлетворительном качестве регулирования. Принципиально важны две его особенности. Вопервых, при управлении объектом с помощью позиционного регулятора всегда присутствуют колебания измеренного сигнала по причине инерционности отдельных элементов, входящих в контур управления. Во-вторых, амплитуда и период этих колебаний не зависят от регулятора, а полностью определяются конструкцией и параметрами объекта управления, измерительного датчика и исполнительного устройства.

Применение позиционного датчика даёт хорошие результаты при выполнении следующих условий:

- инерционность датчика и исполнительного устройства значительно меньше инерционности объекта управления (защитные гильзы и чехлы ухудшают точность поддержания температуры):
- отсутствует транспортное запаздывание (например, поддерживать температуру в баке с вязким продуктом легче, если конструкция обеспечивает перемешивание);
- мощность управляющего воздействия соответствует объекту управления.

Для подавления ложных срабатываний от воздействия помех («дребезг контактов») в регулировочную характеристику позиционных регуляторов вводят зону возврата (гистерезис). Это увеличивает колебания измеренного сигнала, но снижает износ оборудования (реле, пускателей, приводов и др.).

При прочих равных условиях пропорционально-интегрально-дифференциальные (ПИД) регуляторы позволяют повысить точность управления по сравнению с позиционными регуляторами. В принципе точность поддержания будет определяться точностью измерения сигнала и интенсивностью внешних воздействий на объект. Сигнал управления для ПИД-регулятора составляют три компонента:

$$U = (T - T_{\text{ycr}}) + \int (T - T_{\text{ycr}}) dt/ti +$$

$$+ td d(T - T_{\text{ycr}})/dt.$$

Сигнал управления, который вырабатывает регулятор, определяется тем, насколько велико рассогласование (пропорциональный компонент), как долго сохраняется рассогласование (интегральный компонент) и сколь быстро изменяется рассогласование (дифференциальный компонент). Качество управления, которое обеспечивает ПИД-регулятор, в значительной степени зависит от того, насколько хорошо выбранные параметры регулятора соответствуют свойствам системы. Это означает, что ПИД-регулятор перед началом работы необходимо настроить.

Современный многоканальный терморегулятор содержит следующие аппаратные устройства:

- устройство ввода информации (АЦП с коммутатором);
- устройство управления (микроконтроллер, ПЗУ с программой, энергонезависимое запоминающее устройство, в котором сохраняются параметры регулятора при отключенном питании);
- устройство формирования выходных сигналов;
- пульт управления с индикаторами режимов работы регуляторов и состояния выходных сигналов;
- встроенный формирователь сигналов интерфейса RS-485;
- встроенный блок питания.

Функциональная схема двухканального терморегулятора с подключенными датчиками температуры (термопреобразователями сопротивлений) представлена на рисунке 1. В состав каждого канала измерения и регулирования терморегулятора, как правило, входят следующие функциональные узлы: универсальный вход, блок обработки данных, выходное устройство

Под универсальным входом понимается устройство, к которому под-

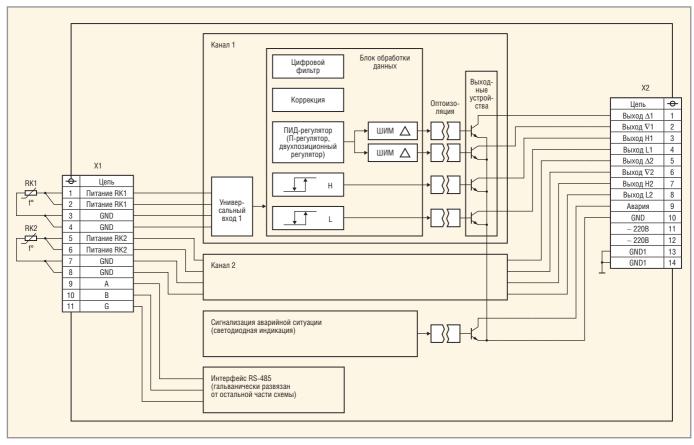



Рис. 1. Функциональная схема двухканального терморегулятора с подключенными датчиками температуры

ключаются первичные датчики (термопары, термопреобразователи сопротивления, датчики с унифицированными выходными сигналами). Если, например, к входу подключается термопреобразователь сопротивления (ТПС), то его сопротивление преобразуется в соответствии с его номинальной статической характеристикой (НСХ) в значение измеренной температуры. Измеряемое сопротивление преобразуется АЦП в цифровой код, поступающий на микроконтроллер блока обработки данных. В блоке обработки данных цифровое значение измеряемой величины может быть подвергнуто фильтрации (для уменьшения влияния случайных помех), коррекции и масштабированию. Микроконтроллер блока обработки данных, работая по заданной программе, управляет состоянием выходных устройств, обменом информацией по интерфейсу и т.д.

Полученное значение отображается на измерительном индикаторе терморегулятора. Тип применяемого первичного датчика и диапазон измерения устанавливается отдельно для каждого канала при конфигурировании (начальной установке). Каждый ПИД-регулятор выполняет сравнение измеренного значения канала с задан-

ными величинами (уставками), обрабатывает сигнал рассогласования между измеренным сигналом и уставкой и выдаёт сигнал управления на ШИМ.

Параметры работы и функции ПИДрегуляторов задаются независимо для каждого канала. Выходные сигналы терморегуляторов управляют внешними исполнительными устройствами. Выходное устройство может быть ключевым или аналоговым. В качестве ключа может применяться транзистор с открытым коллектором, транзисторная оптопара, симисторная оптопара или электромагнитное реле.

Аналоговое выходное устройство, как правило, – это выход по току или по напряжению. Выходные устройства терморегуляторов гальванически развязаны от остальной схемы терморегулятора. Компараторы высокого (Н) и низкого (L) уровней предназначены для сигнализации выхода измеряемого технологического параметра за допустимые пределы. Встроенный интерфейс RS-485 – необходимое оснащение современного терморегулятора.

Обзор рынка начнём с отечественного терморегулятора *ОВЕН ТРМ202*. Фотография лицевой панели терморегулятора ТРМ202 представлена на рисунке 2.

Терморегулятор ТРМ202 позволяет осуществлять следующие функции:

- измерение температуры и других физических величин (давления, влажности, расхода и т. п.) в двух различных точках с помощью стандартных датчиков;
- независимое регулирование двух измеряемых величин по двухпозиционному закону;
- регулирование одной измеряемой величины по трёхпозиционному закону:
- вычисление и регулирование разности двух измеряемых величин  $(\Delta T = T_1 - T_2);$



Рис. 2. Фотография лицевой панели терморегулятора TPM202



Рис. 3. Фотография лицевой панели терморегулятора OBEH TPM138

- вычисление квадратного корня из измеряемой величины при работе с датчиками, имеющими унифицированный выходной сигнал тока или напряжения;
- диагностику обрывов в линиях подключения входных сигналов;
- сохранение параметров регулятора в энергонезависимой памяти при отключении напряжения питания;
- защиту параметров прибора от несанкционированного воздействия путём ввода пароля;

- передачу измеренных значений, а также значений параметров, характеризующих работу прибора, на внешние устройства управления и/или сбора данных по интерфейсу RS-485 (протокол OBEH);
- дистанционное управление прибором.

Прибор имеет два канала регулирования. Подключаемые датчики (тип): термопары (по ГОСТ Р 8.585-2001); ТПС (по ГОСТ Р 6651-94). Более подробно о типах подключаемых датчиках и другую информацию можно найти на интернет-странице [1].

Аппаратная часть прибора включает в себя:

- два универсальных входа для подключения первичных преобразователей (датчиков);
- блок обработки данных, предназначенный для цифровой фильтрации, коррекции и регулирования входной величины;
- два выходных устройства (в зависимости от исполнения прибора, они могут быть ключевого или аналогового типа);
- два индикатора для отображения регулируемой величины и её уставки.

Логические устройства, входящие в блок обработки данных, формируют сигналы управления выходными устройствами в соответствии с заданными режимами работы.

Регулятор ТРМ202 зарегистрирован в Госреестре средств измерений. Прибор имеет множество различных настроек. Но следует отметить, что руководство по эксплуатации написано достаточно внятно и доходчиво. Программирование прибора не вызывает сложностей. Прибор поставляется в следующих корпусах: щитовой Щ1 ( $96 \times 96 \times 70$  мм); щитовой Щ2 ( $96 \times 48 \times 100$  мм); настенный Н ( $130 \times 105 \times 65$  мм).

Заслуживает внимания универсальный восьмиканальный измерительрегулятор *ОВЕН ТРМ138*. Фотография лицевой панели терморегулятора ОВЕН ТРМ138 представлена на рисунке 3.

Ниже приведены основные особенности данного терморегулятора:

- восемь универсальных входов для подключения восьми датчиков разного типа в любых комбинациях, что позволяет одновременно измерять и контролировать несколько различных физических величин (температуру, влажность, давление);
- вычисление дополнительных величин: средних значений от 2 до 8 измеряемых величин, разностей измеренных величин, скорости изменения измеряемой величины;
- от 1 до 8 встроенных выходных устройств различных типов в выбранной пользователем комбинации;
- режим ручного управления выходными устройствами;
- конфигурирование функциональной схемы и установка параметров кнопками на лицевой панели прибора или на ПК с помощью программы-конфигуратора;
- встроенный интерфейс RS-485 (протокол OBEH).

Основные технические характеристики терморегулятора ОВЕН ТРМ138 приведены в таблице 1.

В данном терморегуляторе можно сконфигурировать четыре основных режима работы. Рассмотрим их более подробно:

• работа в конфигурации с восемью входами для подключения датчиков, восемью двухпозиционными регуляторами, формирующими сигнал «Авария», и одним выходным устройством (может использоваться в каче-

Таблица 1. Основные технические характеристики терморегулятора ТРМ138

| Технические характеристики                                                                                                                        | Значение                                                                                                                           |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Общие характеристики                                                                                                                              |                                                                                                                                    |  |  |  |  |
| Количество каналов контроля                                                                                                                       | 18                                                                                                                                 |  |  |  |  |
| Количество выходных устройств                                                                                                                     | 8                                                                                                                                  |  |  |  |  |
| Питание                                                                                                                                           |                                                                                                                                    |  |  |  |  |
| Напряжение питания прибора, В                                                                                                                     | 90245 (постоянного или переменного тока)                                                                                           |  |  |  |  |
| Потребляемая мощность, ВА, не более                                                                                                               | 12                                                                                                                                 |  |  |  |  |
| Частота, Гц                                                                                                                                       | 4763                                                                                                                               |  |  |  |  |
| Входы                                                                                                                                             |                                                                                                                                    |  |  |  |  |
| Время опроса входов, не более, с                                                                                                                  | 0,6                                                                                                                                |  |  |  |  |
| Входные сигналы                                                                                                                                   | 420 mA<br>020 mA<br>05 mA<br>01 B<br>0+50 mB                                                                                       |  |  |  |  |
| Предел основной допустимой приведённой<br>погрешности, %, при измерении:<br>• ТПС<br>• термопарой<br>• унифицированных сигналов тока и напряжения | 0,25<br>0,5<br>0,25                                                                                                                |  |  |  |  |
| Выходнь                                                                                                                                           | ые устройства                                                                                                                      |  |  |  |  |
| Транзисторная оптопара п−р−п-типа<br>• ток нагрузки, мА<br>• напряжение нагрузки, В, не более                                                     | 200<br>40, постоянный ток                                                                                                          |  |  |  |  |
| Симисторная оптопара                                                                                                                              | 50 мА при напряжении до 300 В (постоянно открытый симистор) или 0,5 А (симистор, включенный с частотой не более 50 Гц и tи = 5 мс) |  |  |  |  |
| Реле электромагнитные                                                                                                                             | 4 A при напряжении не более 220 B/50 Гц и cosφ > 0,4                                                                               |  |  |  |  |
| Преобразователи                                                                                                                                   | «Параметр – ток» 420 мА; 0800 Ом                                                                                                   |  |  |  |  |
| Интерфейс связи                                                                                                                                   |                                                                                                                                    |  |  |  |  |
| Тип интерфейса<br>Скорость передачи, Кбит/с<br>Тип кабеля                                                                                         | RS-485<br>2,4; 4,8; 9,6; 14,4:19,6;28,8;38,4; 57,6; 115,2<br>Экранированная витая пара                                             |  |  |  |  |

- стве аварийного сигнализатора в многозонных печах.);
- работа в конфигурации с четырьмя входами для подключения датчиков, восемью двухпозиционными регуляторами, формирующими сигнал управления, восемью выходными устройствами (может использоваться для контроля температуры и двухступенчатого управления процессом нагрева в технологическом оборудовании, содержащем до четырёх зон нагрева);
- работа в конфигурации с восемью входами для подключения датчиков, восемью двухпозиционными регуляторами, формирующими сигнал управления, восемью выходными устройствами (может использоваться в качестве восьмиканального регулятора температуры либо другой физической величины);
- работа в конфигурации с одним входом для подключения датчиков, восемью двухпозиционными регуляторами, формирующими сигнал управления, восемью выходными устройствами (может использоваться для контроля температуры одним датчиком и поддержания восьми независимых уставок по двухпозиционному закону).

Выпускается также измеритель-регулятор *ОВЕН 2ТРМ1*. Данный прибор по своим функциональным возможностям очень схож с измерителем-регулятором ОВЕН ТРМ202, но у 2ТРМ1 отсутствует встроенный интерфейс RS-485. Более подробную информацию об измерителях-регуляторах фирмы «ОВЕН» можно найти на интернетстранице [1] в разделе «Позиционные регуляторы».

Далее рассмотрим терморегулятор METAKOH-5x3, где x – количество каналов регулирования. Ниже приведены основные функции терморегулятора METAKOH-5x3:

- измерение электрического сопротивления первичных термопреобразователей сопротивления (ТСП), его преобразование в соответствии с номинальной статической характеристикой в значение температуры и индикация результата измерения в °С;
- ПИД-, П-, ПИ-, ПД-регулирование с широтно-импульсной модуляцией выхолного сигнала:
- раздельное задание параметров ПИДрегуляторов для каждого канала;
- автоматический и ручной режимы работ ПИД-регулятора;

- «безударный» переход из ручного режима управления к автоматическому регулированию и обратно;
- возможность отключения накопления интегральной составляющей;
- ограничение минимального и максимального значения сигнала управления:
- сигнализация по двум независимым уровням;
- диагностика обрывов линии подключения входных сигналов и перевод работы канала в аварийный режим.

- оптическая изоляция выходных цепей от остальных цепей прибора;
- индикация измеренного значения входного сигнала и значений параметров на четырёхразрядном цифровом дисплее;
- индикация кодов параметра на двухразрядном цифровом дисплее;
- светодиодная индикация состояния выходных сигналов;
- возможность автоматического переключения индикации измеренного значения входного сигнала по каналам;

- задание выполняемых функций и уставка параметров с помощью встроенного пульта, с контролем по цифровому дисплею;
- сохранение параметров регулятора в энергонезависимой памяти при отключении напряжения питания;
- защита параметров прибора от несанкционированного воздействия путём ввода пароля;
- передача измеренных значений, а также значений параметров, харак-
- теризующих работу прибора, на внешние устройства управления и/или сбора данных по интерфейсу RS-485:
- возможность изменения значений параметров, характеризующих работу прибора, с внешними устройствами с использованием интерфейса RS-485.

Основные технические характеристики терморегулятора МЕТАКОН-5х3 приведены в таблице 2. Каждый изме-

рительный канал терморегулятора МЕТАКОН-5х3 имеет в составе:

- один измерительный вход;
- ПИД-регулятор;
- ШИМ с выходами: ▲ (предназначен для управления исполнительным устройством, функционирование которого приводит к увеличению регулируемой величины, например, управление нагревателем) и ▼ (предназначен для управления исполнительным устройством, функционирование которого приводит к уменьшению регулируемой величины, например, управление охладителем);
- два компаратора с выходами Н и L, предназначенные для сигнализации выхода измеряемого технологического параметра за допустимые пределы.

Каждый параметр регулятора имеет значение и мнемонический код. Каждый параметр, идентифицируемый своим кодом, влияет на определённую характеристику работы регулятора. Управление работой регулятора заключается в установлении необходимых значений параметров из числа допустимых. Все параметры функционально и логически разбиты на группы меню. В каждом режиме работы прибора присутствует одно или несколько меню параметров. В каждом меню присутствует один или несколько параметров, значения которых можно просматривать и устанавливать.

В одно- и двухканальных модификациях имеется выход, сигнализирующий об аварийных ситуациях, возникших в процессе работы прибора. Фотография лицевой панели терморегулятора МЕТАКОН-533 представлена на рисунке 4.

Выпускаются также терморегуляторы *МЕТАКОН-5х2*, где х – количество каналов регулирования. Данный регулятор может решать следующие задачи:

- измерение и индикацию технологических параметров;
- двухпозиционное, трёхпозиционное регулирование технологических параметров;
- сигнализация о выходе технологических параметров за заданные пределы;
- сигнализация об аварийных ситуациях в технологических установках;
- работа в сети RS-485 в распределённых АСУ ТП.

Терморегуляторы МЕТАКОН-5x2 отличаются от МЕТАКОН-5x3 отсут-

Таблица 2. Основные технические характеристики терморегулятора МЕТАКОН-5х3

| Технические характеристики                                                                                                                                                                                                                                                    | Значение                                                                                                                                                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Общие хар                                                                                                                                                                                                                                                                     | рактеристики                                                                                                                                                  |  |  |  |  |  |
| Количество каналов контроля и регулирования<br>(в зависимости от модификации)                                                                                                                                                                                                 | 13                                                                                                                                                            |  |  |  |  |  |
| Габариты, мм, не более                                                                                                                                                                                                                                                        | 96 × 96 × 160                                                                                                                                                 |  |  |  |  |  |
| Масса, кг                                                                                                                                                                                                                                                                     | 0,8                                                                                                                                                           |  |  |  |  |  |
| Количество выходных устройств<br>(в зависимости от модификации)                                                                                                                                                                                                               | 13                                                                                                                                                            |  |  |  |  |  |
| Питание                                                                                                                                                                                                                                                                       |                                                                                                                                                               |  |  |  |  |  |
| Напряжение питания прибора, В                                                                                                                                                                                                                                                 | 220 (+1015%), переменный ток                                                                                                                                  |  |  |  |  |  |
| Потребляемая мощность, ВА, не более                                                                                                                                                                                                                                           | 9                                                                                                                                                             |  |  |  |  |  |
| Частота, Гц                                                                                                                                                                                                                                                                   | 50±0,5                                                                                                                                                        |  |  |  |  |  |
| Входы                                                                                                                                                                                                                                                                         |                                                                                                                                                               |  |  |  |  |  |
| Период опроса входных сигналов, с, не более                                                                                                                                                                                                                                   | 1                                                                                                                                                             |  |  |  |  |  |
| Тип входного сигнала (в зависимости от модификации)                                                                                                                                                                                                                           | 420 мА 020 мА 010 мА 01 В 010 В 100П, 100М, Pt100 50П, 50М, Pt50 Термопары: ХА, ХК, ПП, ПР, НН, ЖК, ВР(А-1), ВР(А-2), ВР(А-3), 050 мВ, градуировки ПМТ-2, Р-3 |  |  |  |  |  |
| Предел основной допустимой приведённой погрешности измерения сигналов, %                                                                                                                                                                                                      | 0,1                                                                                                                                                           |  |  |  |  |  |
| Выходны                                                                                                                                                                                                                                                                       | е устройства                                                                                                                                                  |  |  |  |  |  |
| Реле элект                                                                                                                                                                                                                                                                    | ромагнитные                                                                                                                                                   |  |  |  |  |  |
| Допустимые значения коммутируемого напряжения:  постоянное напряжение, В  переменное напряжение, В  при работе с активной нагрузкой  при работе с индуктивной нагрузкой  максимальная коммутируемая мощность  на переменном токе  на постоянном токе  Гальваническая изоляция | 110<br>250<br>5<br>2<br>1200 BA<br>150 Вт<br>Индивидуальная гальваническая изоляция каждого выхода                                                            |  |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                      | м (с общим эмиттером) с оптической изоляцией                                                                                                                  |  |  |  |  |  |
| Максимальная коммутируемая нагрузка<br>Гальваническая изоляция                                                                                                                                                                                                                | 24 В/150 мА<br>Групповая изоляция от цепей питания и интерфейса                                                                                               |  |  |  |  |  |
| Активный транзисторный выход д                                                                                                                                                                                                                                                | ля управления твердотельным реле                                                                                                                              |  |  |  |  |  |
| Максимальный ток нагрузки, мА Напряжение лог. 1, В Напряжение лог. 0, В Ток короткого замыкания, мА, не более Гальваническая изоляция                                                                                                                                         | 40<br>910<br>01<br>100<br>Групповая изоляция от цепей питания и интерфейса<br>горный выход                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                               |  |  |  |  |  |
| Импульсный ток через симистор (длительность 100 мкс), А<br>Максимальное напряжение на симисторе, В<br>Критическая скорость нарастания напряжения<br>в закрытом состоянии, не менее<br>Гальваническая изоляция                                                                 | 1<br>500<br>600 В/мкс<br>Индивидуальная гальваническая изоляция каждого выхода                                                                                |  |  |  |  |  |
| Интерф                                                                                                                                                                                                                                                                        | ейс связи                                                                                                                                                     |  |  |  |  |  |
| Тип интерфейса<br>Скорость передачи, Кбит/с<br>Тип кабеля<br>Диапазон задания адресов<br>Напряжение гальванической изоляции, кВ, не более                                                                                                                                     | RS-485<br>2,4; 4,8; 9,6; 19,2<br>Экранированная витая пара<br>0 — 255<br>1                                                                                    |  |  |  |  |  |

32

Количество устройств в сети, не более

ствием ПИД-регулятора, поэтому позволяют осуществлять только двух- и трёхпозиционное регулирование. Фотография лицевой панели терморегулятора МЕТАКОН-562 представлена на рисунке 5.

Более подробную информацию об измерителях-регуляторах МЕТАКОН можно найти на интернет-странице [2].

*Термодат-13К2* – многоканальный регулятор температуры, обеспечивающий высокую точность измерения и регулирования. Это - универсальный прибор, имеющий большие возможности, множество тонких настроек и сервисных функций. Несмотря на это, прибор прост в наладке и эксплуатации. Для его настройки и эксплуатации не требуется специальных знаний. Количество каналов измерения и регулирования - два, три или четыре - определяется моделью. Измерение по каналам производится по очереди. Каналы могут отображаться на дисплее циклически, либо можно остановиться на одном канале, при этом измерение и регулирование будет производиться по всем каналам. Каждый канал терморегулятора содержит ПИД-регулятор; для удобства



Рис. 4. Фотография лицевой панели терморегулятора METAKOH-533

настройки предусмотрена автоматическая настройка коэффициентов ПИД-регулирования для каждого канала. Прибор может также работать в режиме позиционного регулирования (включено/выключено).

Термодат-13К2 имеет универсальные входы, что позволяет использовать для измерений различные датчики: термопары, термосопротивления, датчики с токовым выходом и др. К каждому входу может быть подключен любой датчик, т.е. датчики на разных каналах могут быть различных типов. Диапазон измерения температуры от -200 до 2500°C определяется



Рис. 5. Фотография лицевой панели терморегулятора METAKOH-562

датчиком. Температурное разрешение по выбору, 1,0 или 0,1°С. Каждый канал может управлять как печью, так и холодильником. Прибор имеет функцию плавного изменения температуры с заданной скоростью. Скорость роста или снижения температуры задаётся оператором. Термодат-13К2 имеет развитую систему аварийной и предупредительной сигнализации: пять различных типов «аварии», обрыв и нарушение контура регулирования.

Термодат-13К2 имеет достаточно мощные релейные выходы, предназначенные для управления нагревателем,

охладителем, таймером или для аварийной сигнализации. На разных каналах могут быть заданы различные функции, например, первый канал – для управления нагревателем, второй – для управления охладителем, и т.д.

Терморегулятор может быть оборудован интерфейсом RS-485 или RS-232. Интерфейс имеет гальваническую изоляцию от схемы прибора. По цифровому каналу передаётся информация о температуре и уставке регулирования. Кроме того, по интерфейсу можно как прочитать, так и изменить большин-

ство настроечных параметров. Прибор может иметь большой архив для записи графика температуры, в который записываются данные о температуре и текущей уставке регулирования с привязкой к реальному времени. Просмотреть архив можно на дисплее прибора или на компьютере.

Две строки крупных четырёхразрядных светодиодных индикаторов обеспечивают чёткое отображение величин в условиях высокой освещённости.

Прибор Термодат-13К2 имеет полный набор сервисных функций, харак-

терных для современных регуляторов температуры:

- управление доступом к параметрам и настройкам. Три типа доступа, включая полный запрет на изменение параметров;
- ПИД-регулирование, автоматическую настройку ПИД-коэффициентов:
- программное изменение температуры с заданной скоростью;
- возможность ручного управления мощностью, подаваемой на нагреватель;

Таблица 3. Основные технические характеристики терморегулятора Термодат-13КС2

|                                                  |                                                                                                                                              | Входы                                                                                           |                                                                           |                             |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|--|--|
| Количество входов                                |                                                                                                                                              |                                                                                                 | 5 входов для термосопротивлений                                           |                             |  |  |
| Полный диапазон измерения, °С                    |                                                                                                                                              | ОТ                                                                                              | –200 до 2500 (определяется датчиког                                       | м)                          |  |  |
| Время полного цикла измерения                    | по всем каналам, с                                                                                                                           |                                                                                                 | 2,5                                                                       |                             |  |  |
| Класс точности                                   |                                                                                                                                              |                                                                                                 | 0,25                                                                      |                             |  |  |
| Разрешение, °С                                   |                                                                                                                                              | 1 или 0,1 (выбирается пользователем)                                                            |                                                                           |                             |  |  |
| Типы термосопротивлений                          |                                                                                                                                              | Pt (W100 = 1,385), Pt (W10                                                                      | 0 = 1,390), Cu (W100 = 1,428), Cu (W1                                     | 00 = 1,426), Ni (W = 1,617) |  |  |
| Сопротивление при 0°С, Ом                        |                                                                                                                                              | Стандартные значения                                                                            | Стандартные значения 100 и 50 или любое другое значение в диапазоне 20200 |                             |  |  |
| Компенсация сопротивления подв                   | водящих проводов                                                                                                                             | Автоматическая компенсация по трёхпроводной схеме (сопротивление каждого провода не более 20 Ом |                                                                           |                             |  |  |
| Измерительный ток, мА                            |                                                                                                                                              | 0,25                                                                                            |                                                                           |                             |  |  |
|                                                  |                                                                                                                                              | Основные выходы                                                                                 |                                                                           |                             |  |  |
| Количество выходных реле                         |                                                                                                                                              | 5                                                                                               |                                                                           |                             |  |  |
| Максимальная нагрузка                            |                                                                                                                                              | 8 A/~220 В (только на активной нагрузке)                                                        |                                                                           |                             |  |  |
| Время между переключениями ре                    | эле                                                                                                                                          | Задаётся пользователем в диапазоне от 1 до 240 с, рекомендуемое время - не менее 20 с           |                                                                           |                             |  |  |
| Применение выхода                                |                                                                                                                                              | Управление нагревателем, управление охладителем или аварийная сигнализация                      |                                                                           |                             |  |  |
| Особенности                                      |                                                                                                                                              | Наличие встроенной RC-цепи для снижения искрообразования и продления срока службы реле          |                                                                           |                             |  |  |
|                                                  |                                                                                                                                              | Функции регулирования                                                                           |                                                                           |                             |  |  |
| Законы регулирования                             | ПИД или позиционный (вкл./выкл.)                                                                                                             |                                                                                                 |                                                                           |                             |  |  |
| Режим работы                                     |                                                                                                                                              | Нагрев/охлаждение                                                                               |                                                                           |                             |  |  |
| Особенности                                      | Функция автонастройки ПИД коэффициентов; ограничение максимальной и минимальной мощнос                                                       |                                                                                                 |                                                                           |                             |  |  |
|                                                  | Изменение                                                                                                                                    | :<br>: температуры с заданной скорость                                                          | юю                                                                        |                             |  |  |
| Скорость изменения уставки                       |                                                                                                                                              | От 1 до 1000                                                                                    | °С/ч                                                                      |                             |  |  |
|                                                  |                                                                                                                                              | Архив (по заказу)                                                                               |                                                                           |                             |  |  |
| Архивная память                                  |                                                                                                                                              | 2 M6                                                                                            |                                                                           |                             |  |  |
| Период записи в архив                            | От 1 с до 100 мин                                                                                                                            |                                                                                                 |                                                                           |                             |  |  |
| Максимальное количество<br>записей на один канал | 200 000                                                                                                                                      |                                                                                                 |                                                                           |                             |  |  |
| Продолжительность записи                         | При периоде записи                                                                                                                           | 1 c                                                                                             | 30 c                                                                      | 6 мин                       |  |  |
|                                                  | Продолжительность непрерывной записи                                                                                                         | До 1 суток                                                                                      | До 1 месяца                                                               | До 1 года                   |  |  |
|                                                  | Тип интерфейса                                                                                                                               |                                                                                                 | RS-485                                                                    |                             |  |  |
| Интерфейс (по заказу)                            | Особенности                                                                                                                                  | Изолированный                                                                                   |                                                                           |                             |  |  |
|                                                  | Протокол                                                                                                                                     | Modbus и Термодат                                                                               |                                                                           |                             |  |  |
|                                                  |                                                                                                                                              | Сервисные функции                                                                               |                                                                           |                             |  |  |
| Контроль обрыва цепи датчика                     |                                                                                                                                              |                                                                                                 |                                                                           |                             |  |  |
| Возможность ограничения диапаз                   | вона изменения уставки                                                                                                                       |                                                                                                 |                                                                           |                             |  |  |
| Защита холодного нагревателя. П                  | осле включения происходит плавное нараст                                                                                                     | ание мощности, подаваемой на на                                                                 | агреватель, за время от 10 с до 40 ми                                     | H                           |  |  |
| Цифровая фильтрация сигнала                      |                                                                                                                                              |                                                                                                 |                                                                           |                             |  |  |
| Режим ручного управления мощн                    | остью                                                                                                                                        |                                                                                                 |                                                                           |                             |  |  |
| Возможность введение поправки                    | к измеренной температуре типа $T = T_{N3M} + (t_{N3M} + t_{N3M})$                                                                            | 7 <sub>N3M</sub> + A)                                                                           |                                                                           |                             |  |  |
| Питание                                          | ~220 В, +1015%, 50 Гц                                                                                                                        |                                                                                                 |                                                                           |                             |  |  |
| Потребляемая мощность, Вт,<br>не более           | 7                                                                                                                                            |                                                                                                 |                                                                           |                             |  |  |
|                                                  |                                                                                                                                              | Общая информация                                                                                |                                                                           |                             |  |  |
| Индикаторы                                       | Светодиодные, красного цвета. Две строки по четыре разряда и индикатор номера канала. Высота символов 14 и 10 мм                             |                                                                                                 |                                                                           |                             |  |  |
| Конструктивное исполнение, масса и размеры       | Исполнение для щитового монтажа, лицевая панель $96 \times 96$ мм, глубина $86$ мм, монтажный вырез в щите $92 \times 92$ мм, масса $0.8$ кг |                                                                                                 |                                                                           |                             |  |  |
| Сертификация                                     | Приборы внесены в Государственный реестр средств измерений №17602-04, Сертификат RU.C.32.001.A. №18321 от 04,07.2004 г                       |                                                                                                 |                                                                           |                             |  |  |
| Условия эксплуатации                             | Темпера                                                                                                                                      | тура от –30 до 55°C, влажность от                                                               | г 5 до 90%, без конденсации влаги                                         |                             |  |  |

- ограничение максимальной и минимальной мощности;
- ограничение диапазона изменения температурной уставки;
- два типа таймера;
- пять режимов работы аварийной сигнализации, возможность блокировки аварийной сигнализации в момент начального разогрева объекта;
- контроль обрыва датчика;
- функцию защиты холодного нагревателя (плавное нарастание мощности при включении);
- контроль исправности контура регулирования по отсутствию теплового отклика при изменении мощности;
- архивную флэш-память для графика температуры, встроенные часы реального времени;
- фильтрацию входных данных;
- компьютерный интерфейс.

Фотография лицевой панели терморегулятора Термодат 13К2 представлена на рисунке 6.

Далее рассмотрим пятиканальный регулятор температуры *Термодат-13КС2*; основные технические характеристики прибора приведены в таблице 3.



Рис. 6. Фотография лицевой панели терморегулятора Термодат-13K2

Регулятор температуры Термодат-13КС2 обеспечивает высокую точность измерения и регулирования и поставляется только в одной модификации: пять каналов измерения и регулирования, все выходные устройства – релейные. Прибор прост в наладке и эксплуатации. Предусмотрена автоматическая настройка коэффициентов ПИД-регулирования для каждого канала. Прибор может также работать в режиме позиционного регулирования (включено/выключено). Термодат-13КС2 может иметь боль-



Рис. 7. Фотография лицевой панели терморегулятора Термодат-13KC2

шой архив (2 Мб) для записи графика температуры. В архив записываются данные о температуре и текущей уставке регулирования с привязкой к реальному времени. Просмотреть архив можно на дисплее прибора или на компьютере. Фотография лицевой панели терморегулятора Термодат 13КС2 представлена на рисунке 7.

## Литература

- 1. http://www.owen.ru.
- 2. http://www.contravt.ru.
- 3. http://www.termodat.ru.

