Измерительный преобразователь для широкополосных вольтметров переменного тока

Олег Дворников, Владимир Чеховский, Юрий Шульгевич (г. Минск, Беларусь)

Рассмотрен измерительный преобразователь переменного напряжения произвольной формы в постоянное по уровню среднеквадратического значения, имеющий погрешность менее 3% для синусоидальных сигналов с эффективным значением от 0,3 до 2,5 В и частотой от 20 Гц до 100 МГц.

Измерительные преобразователи среднеквадратического значения напряжения (ПСКЗ) являются основой различных электроизмерительных приборов - вольтметров переменного тока ВЗ, преобразователей напряжения В9 и др. Серийно выпускаемые микросхемы экспоненциальнологарифмических ПСКЗ (AD536, AD636, AD637) обладают высокой точностью, но небольшим частотным диапазоном, пропорциональным уровню входного сигнала [1]. Микросхемы преобразователей, использующих аналоговые умножители напряжения (AD834, AD8361, AD8362, AD8317), могут обрабатывать высокочастотные сигналы, однако не допускают наличия постоянной и низкочастотной составляющих в спектре сигнала, и их погрешность довольно велика [2].

В связи с этим для высокоточного преобразования сигналов произвольной формы обычно используются термоэлектрические преобразователи [3], из которых наилучшим соотношением качество/цена характеризуются полупроводниковые транзисторные термопреобразователи. На основе теоретического анализа [4] разработаны раз-

Рис. 1. Принципиальная электрическая схема микросборки РБПНОО1

личные электрические схемы ПСКЗ с транзисторными термопреобразователями [4, 5]. Однако исследования показали, что для обеспечения технологичности изготовления при массовом производстве и стабильности характеристик такие ПСКЗ должны быть модифицированы, а именно: увеличена эффективность преобразования мощности входного сигнала в выходное напряжение термопреобразователя и максимально уменьшена площадь печатной платы, предназначенной для размещения ПСКЗ в термостате. Необходимо также разработать методику регулировки, обеспечивающую высокую линейность передаточной характеристики транзисторных ПСКЗ.

Для решения указанных задач была разработана и изготовлена микросборка полупроводникового дифференциального термоэлектрического преобразователя РБПН001 [6] с коэффициентом преобразования от 2,5 до 3,0 мВ/мВт и электронный модуль ПСКЗ на её основе.

Микросборка РБПН001 (см. рис. 1) состоит из двух кремниевых кристаллов, размещённых на теплоизолирующей подложке. Каждый кристалл содержит два нагревательных резистора и n-p-n-транзистор. При необходимости резисторы можно соединить параллельно для увеличения выходного сигнала термоэлектрического преобразователя либо последовательно для увеличения входного сопротивления и ослабления требований к усилителю, находящемуся перед термоэлектрическим преобразователем [5]. Особое внимание при проектировании микросборки уделялось увеличению коэффициента

термоэлектрического преобразования. Для этого максимально уменьшено расстояние между нагревательным резистором и датчиком температуры – эмиттерным переходом п-р-п-транзистора, значительно уменьшен отвод тепла от кристаллов за счёт выбора материала теплоизолирующей подложки, минимизации площади и толщины полупроводниковых кристаллов, уменьшения длины и диаметра проводников, соединяющих контактные площадки кристалла и выводы корпуса [7].

Преобразователь, выполненный на микросборке РБПН001, функционирует следующим образом. Известно, что температура резистора является линейной функцией от рассеиваемой резистором мощности и, следовательно, определяется квадратом среднеквадратического значения приложенного напряжения или тока:

$$P = \frac{1}{TR} \int_{0}^{T} V_{\rm INP}^2(t) dt , \qquad (1)$$

где P – средняя мощность, рассеиваемая напряжением $V_{INP}(t)$ на резисторе R за время T.

Если изменяющийся во времени сигнал $V_{\rm INP}(t)$ приложен к нагревательному резистору R_A (см. рис. 2), то мощность, рассеиваемая на этом резисторе, приводит к его нагреванию, передаче тепла к транзистору QA и изменению напряжения на прямо смещённом эмиттерном переходе Q_A. В том случае, когда напряжение на резисторе R_В отличается от напряжения на R_A, сигнал разбаланса, равный разности коллекторных напряжений Q_A и Q_B, будет усиливаться DA₂, поступать через схему извлечения квадратного корня DA3-DA5 на резистор RB и приводить к изменению мощности, рассеиваемой R_B. При этом изменяется температура R_B, Q_B, напряжение на прямо смещённом эмиттерном и, следовательно, обратно смещённом коллекторном переходе Q_B.

SHARP Strong2

Превосходство в жёстких условиях

УСТОЙЧИВОСТЬ К ТЕМПЕРАТУРАМ

Новая технология применения жидких кристаллов и оптимизация теплоотвода

LLCD]

	Обычный LCD	Strong LCD1	Strong LCD2
Рабочий диапазон температур	0 до +50°С	—10 до +65°С	—30 до +80°С
Диапазон температур хранения	—25 до +60°С	—30 до +70°С	—30 до +80°С

УСТОЙЧИВОСТЬ К УДАРАМ И ВИБРАЦИИ

Усилена модульная конструкция

	Обычный LCD	Strong LCD1	Strong LCD2		
Устойчивость к вибрации	От 57 до 500 кГц, ускорение 1g	От 57 до 500 кГц, ускорение 1g	От 57 to 500 кГц, ускорение от 1,5 до 2g		
Устойчивость к ударным нагрузкам	50g, 11 мс	50g, 11 мс	от 60 до 70g, 11 мс		

ЯРКОСТЬ

Значительно повышена благодаря улучшению прозрачности панели и разработке яркой системы задней подсветки

	Обычный LCD	Strong LCD1	Strong LCD2		
Яркость	300 кд/м ²	Больше чем 300 кд/м²	Больше чем 400 кд/м²		

КОНТРАСТНОСТЬ

Подавляя яркость экрана при отображении чёрного и адаптируя новую систему управления, получаем повышенную контрастность

	Обычный LCD	Strong LCD1	Strong LCD2		
Контраст	350 : 1	350 : 1	600 : 1		

SHARP Strong2 LCD-панели

№ модели	Размер дисплея	Разрешение, пикс.	Контраст	Яркость, кд/м²	Входной сигнал		
LQ057V3DG01	5,7" TFT	640 × 480	600 : 1	400	Цифровой 6-бит RGB		
LQ075V3DG01	7,5" TFT	640 × 480	600 : 1	400	Цифровой 6-бит RGB Цифровой 6-бит RGB Цифровой 6-бит RGB		
LQ084V3DG01	8,4" TFT	640 × 480	600 : 1	400			
LQ104V1DG61	10,4" TFT	640 × 480	600 : 1	450			
LQ121S1DG61	12,1" TFT	800 × 600	600 : 1	450	Цифровой 6-бит RGB		

Официальный дистрибьютор SHARP на территории России с стран СНГ

ПРОСОФТ — АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА

Телефон: (495) 232-2522 • E-mail: info@prochip.ru • Web: www.prochip.ru

Рис. 2. Принципиальная схема электронного модуля ПСКЗ

 $\mathsf{D_1-D_3}-\mathsf{BAV99};\,\mathsf{DA_1}-\mathsf{P}\mathsf{D}\mathsf{\Pi}\mathsf{H001};\,\mathsf{DA_2}-\mathsf{O}\mathsf{P}\mathsf{-27};\,\mathsf{DA_3},\,\mathsf{DA_5}-\mathsf{AD711};\,\mathsf{DA_4}-\mathsf{CA3046};\,\mathsf{DA_6}-\mathsf{LTC1150}$

Рис. 3. Передаточная характеристика ПСКЗ при различном напряжении (V₀) на входе делителя R₇, R₉

Обратная связь через цепь DA2-DA5 приведёт к такому изменению напряжения на резисторе R_B, при котором коллекторные напряжения Q_A и Q_B будут одинаковыми. Если резисторы R_A, R_B и транзисторы Q_A, Q_B имеют идентичные характеристики, то при нулевом напряжении разбаланса напряжение постоянного тока на R_в (V_{RB}) будет прямо пропорционально среднеквадратическому значению изменяющегося во времени входного сигнала V_{INPRMS}. Другими словами, мощность напряжения постоянного тока, подаваемая на резистор R_B, равна мощности, рассеиваемой резисто-

Рис. 4. Относительная погрешность ПСКЗ при различном напряжении (V_0) на входе делителя R_7 , R_9

ром R_A от изменяющегося во времени сигнала:

$$P_{\rm RA} = P_{\rm RB},\tag{2}$$

$$\frac{1}{TR_{\rm A}} \int_{0}^{T} V_{\rm INP}^{2}(t) dt = \frac{V_{\rm RB}^{2}}{R_{\rm B}}, \qquad (3)$$

при $R_{\rm A} = R_{\rm B}$

$$V_{\rm RB} = \sqrt{\frac{1}{T} \int_{0}^{T} V_{\rm INP}^2(t) dt} \equiv V_{\rm INPRMS}. \tag{4}$$

Для средне- и высокочастотных сигналов происходит усреднение входной мощности благодаря тепловой постоянной времени полупроводниковых кристаллов, что обеспе-

Таблица 1. Зависимость относительной погрешности преобразования Δ от уровня входного напряжения постоянного тока V_{INPDC}

V _{INPDC} , B	0,1	0,2	0,3	0,5	0,7	1,0	1,5	2,0	2,5
Δ , %	-1,500	-0,350	-0,167	-0,060	-0,043	-0,020	-0,013	-0,010	-0,004

чивает постоянное напряжение на коллекторе Q_A.

Схема ПСКЗ, приведённая на рисунке 2, имеет ряд особенностей. В неё включен диод D3 для устранения положительной обратной связи, возникающей при отрицательном напряжении на R_B, и конденсаторы C₂, C₄, С5, обеспечивающие устойчивую работу дифференциального каскада (Q_A, Q_B, R₂, R₃, R₅, R₆) и усилителя DA₂. Источник тока дифференциального каскада выполнен на высокоомном резисторе R₄, зашунтированном конденсатором С1. Такое схемотехническое решение обладает меньшим уровнем шума по сравнению с активным источником тока. Для улучшения переходной характеристики ПСКЗ введена схема извлечения квадратного корня на операционных усилителях (ОУ) DA3, DA5 и наборе n-p-n-транзисторов DA₄.

Преобразователь реализован на печатной плате размером 30 × 45 × 5 мм. Для подачи сигналов и напряжения питания применяются проводники, присоединяемые к плате через монтажные отверстия.

Особое внимание уделено достижению линейности передаточной характеристики с помощью регулировочных элементов, для чего:

- потенциометром R₈ компенсируется напряжение смещения всего ПСКЗ, а именно устанавливается близкое к нулю напряжение в узле «Выход» при нулевом напряжении в узле «Вход»;
- резистивным делителем R₁₄, R₁₅ и масштабирующим усилителем DA₆, R₁₉, R₂₂, R₂₃ задаётся требуемый коэффициент преобразования во всём динамическом диапазоне;
- потенциометром R₁₀ корректируется режим по постоянному току схемы извлечения квадратного корня, что позволяет выбрать область вольтамперных характеристик транзисторов DA₄, гарантирующую максимальную линейность передаточной характеристики.

Возможность выполнения высокоточной настройки ПСКЗ иллюстрируют результаты измерений передаточной характеристики (см. рис. 3) и относительной погрешности (см. рис. 4) ПСКЗ для входного напряжения постоянного тока и одного регулируемого потенциометром R₈ параметра – напряжения (V₀) на входе делителя R₇, R₉. При небольшом входном напряже-

Таблица 2. Зависимость относительной погрешности преобразования Δ от уровня V_{INPRMS} и частоты f входного напряжения синусоидальной формы

Параметры	Частота входного напряжения синусоидальной формы								
парамстры	от 20 Гц до 1 МГц	1 МГц	3 МГц	5 МГц	10 МГц	30 МГц	50 МГц	100 МГц	150 МГц
Δ, %, при V _{INPRMS} = 1 В	J0,07	-0,40	-0,50	-0,40	-0,10	-0,60	-0,86	-1,83	-5,97
Δ, %, при V _{INPRMS} = 0,3 В	J0,15	-0,87	-0,99	-0,93	-0,77	-1,33	-1,77	-2,73	-6,1
Источник сигнала	Fluke 5720A	Fluke 9500							

нии ПСКЗ имеет зону нечувствительности, но существует диапазон значений напряжения V_0 , при котором характеристика максимально линейна (кривая 1 на рисунке 3). Для исследованного экземпляра ПСКЗ величина V_0 должна быть равна – 8,6 ± 0,3 В, что обеспечивает минимальную относительную погрешность. Учитывая коэффициент ослабления делителя R_7 , R_9 , максимальная линейность достигнута при напряжении смещения дифференциальной пары Q_A/Q_B , приблизительно равном –0,5 мВ.

Измерение погрешности преобразования ПСКЗ проводилось при помощи высокостабильных источников питания Б5-78/1, прецизионного цифрового вольтметра В7-74 и калибраторов фирмы Fluke типа 5720А и 9500. Результаты измерения параметров макетного образца ПСКЗ приведены в таблицах 1 и 2.

Так как в диапазоне частот синусоидального сигнала от 1 до 100 МГц зарегистрированная погрешность ПСКЗ сравнима с погрешностью источника входного сигнала (прибора Fluke 9500), можно предположить, что реальная погрешность ПСКЗ в этом диапазоне частот меньше полученных значений.

Литература

- Дворников О.В. Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения. Часть 1. Компоненты и технологии. 2004. № 9. С. 62–69.
- Дворников О.В. Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадра-

тического значения. Часть 2. Компоненты и технологии. 2005. № 1. С. 34–39.

- 3. Дворников О.В. Микроэлектронные преобразователи переменного напряжения в постоянное по уровню среднеквадратического значения. Часть 3. Компоненты и технологии. 2005. № 2. С. 84–93.
- Ott W.E. A new technique of thermal RMS measurement. IEEE Journal of Solid-State Circuits. 1974. Vol. 9. No. 12. P. 374–380.
- 5. Грязнов М.И. Измерение параметров импульсов. Радио и связь. 1991. С. 120–200.
- Дворников О.В. Полупроводниковый дифференциальный термоэлектрический преобразователь. Chip News. 2004. № 8. С. 34–38.
- 7. Дворников О.В., Муравьев Б.Д., Володкевич А.А. Термочувствительная интегральная схема. Пат. 8810. Респ. Беларусь. МПК Н 01L 21/82, G 01R 19/03. ОАО «МНИПИ». № а20040544. заявл.14.06.2004.

Программируемые магнитные датчики угла поворота

Характеристики

- вразрешение 8, 10 и 12-бит
- программирование «нулевой позиции»
- высокая скорость: до 30 000 об/мин
- ■температурный диапазон работы от -40°С до +125°С
- ■маленький корпус SSOP 16 (5,3 мм × 6,2 мм)
- ультранизкий ток потребления 30 мкА

Область применения

- поворотные выключатели
- ■контроль позиции AC/DC-моторов
- ■контроль положения клапанов, вентилей
- ∎сенсор позиции педали «газа» и угла поворота руля ∎автоматика

Преимущества

- идельно подходит для применения в неблагоприятных условиях окружающей среды
- высокая надёжность за счёт отсутствия движущихся частей
 устойчивость к разъюстировке и изменению температуры
- окружающей среды

ПРОСОФТ — АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА PROSOFT [®] тел.: (495) 232-2522 е-mail: info@prochip.ru • Web: www.prochip.ru

реклама

37