Методы идентификации параметров моделей интегральных транзисторов Часть 4. Идентификация параметров модели Шихмана–Ходжеса полевого транзистора с р–п-переходом

Олег Дворников, Юрий Шульгевич (г. Минск, Беларусь)

Рассмотрена модель Шихмана–Ходжеса, приведены математические соотношения для расчёта параметров модели с помощью конструктивно-технологических и электрофизических параметров, описана идентификация параметров на основе результатов электрических измерений.

Модель Шихмана-Ходжеса полевого транзистора с р-N-переходом

Характеристики полевого транзистора с p–n-переходом чаще всего описываются известной моделью Шихма-

Рис. 33. Эквивалентная электрическая схема интегрального р-ПТП с учётом влияния подложки

Рис. 34. Малосигнальная эквивалентная электрическая схема ПТП с источниками шумов на-Ходжеса (Shichman H., Hodges D.A.) [23]. Эквивалентная электрическая схема полевого транзистора с p-n-переходом (ПТП) приведена на рисунке 33, а малосигнальная электрическая схема с источниками шумов – на рисунке 34.

Положительным считается ток, втекающий в транзистор. Здесь и далее выражения относятся к наиболее применяемому в полупроводниковых микросхемах р-канальному ПТП (р-ПТП).

В соответствии с упрощённой электрической моделью Шихмана–Ходжеса для «внутреннего» транзистора [10]:

$$I_{\rm G} = -I_{\rm SG} - I_{\rm DG},$$
 (103)

$$I_{\rm D} = -I_{\rm DRAIN} + I_{\rm DG}, \qquad (105)$$

$$I_{\rm SG} = IS \left(\exp \frac{V_{\rm SG}}{N \varphi_{\rm T}} - 1 \right), \quad (106)$$

$$I_{\rm DG} = IS \left(\exp \frac{V_{\rm DG}}{N \varphi_{\rm T}} - 1 \right). \quad (107)$$

При прямом включении для р-ПТП $(V_{\text{SD}} > 0)$:

$$V_{\text{DRAIN}} = 0, \qquad (108)$$

в области отсечки, при V_{GS} > VTO

$$I_{\text{DRAIN}} = \text{BETA}(1 + V_{\text{SD}}\text{LAMBDA}) \times V_{\text{SD}}[2(VTO - V_{\text{GS}}) - V_{\text{SD}}]; \quad (109)$$

в линейной области ВАХ, пр
и $0 < V_{\rm SD} < VTO - V_{\rm GS}, V_{\rm GS} < VTO$

 $I_{\text{DRAIN}} = \text{BETA}(1 + V_{\text{SD}}\text{LAMBDA}) \times (VTO - V_{\text{GS}})^2; \quad (110)$

в области насыщения ВАХ, при $V_{\rm SD}$ >
 $VTO-V_{\rm GS}, V_{\rm GS} < VTO.$

Здесь $I_{\rm G}, I_{\rm D}, I_{\rm S}, I_{\rm SG}, I_{\rm DG}, I_{\rm DRAIN}$ – токи затвора, стока, истока, р–п-перехода исток–затвор, сток–затвор, источника тока эквивалентной схемы ПТП соответственно; $V_{\rm GS}, V_{\rm SD}$ – напряжение на «внутреннем» р–п-переходе затвор–исток и промежутке исток–сток.

В электрической модели на рисунке 34 используются источники шумов, ёмкости p–n-переходов, малосигнальные параметры (проводимость p–n-перехода исток–затвор g_{SG} , сток–затвор g_{DG} , передаточная проводимость (крутизна) g_M , выходная проводимость g_{SD}), определяемые соотношениями [10]:

$$S_{\rm NRS}^2 = \frac{{\rm d}I_{\rm NRS}^2}{{\rm d}f} = \frac{4\,kT}{RS},\qquad(111)$$

$$S_{\rm NRD}^2 \equiv \frac{{\rm d}I_{\rm NRD}^2}{{\rm d}f} = \frac{4\,kT}{RD},\qquad(112)$$

$$S_{\rm ND}^2 = \frac{dI_{\rm ND}^2}{df} = \frac{8\,kT}{3}g_{\rm M} + \frac{I_{\rm DRAIN}^{Al'}\,Kl'}{f},\,(113)$$

$$C_{\text{DG}} = \frac{CGD}{\left(1 - \frac{V_{\text{DG}}}{PB}\right)^{M}} \operatorname{при} V_{\text{DG}} < FCPB, (114)$$

$$C_{\text{SG}} = \frac{CGS}{\left(1 - \frac{V_{\text{SG}}}{PB}\right)^M}$$
 при $V_{\text{SG}} < FCPB$, (115)

$$g_{\rm SG} = \frac{\mathrm{d}I_{\rm SG}}{\mathrm{d}V_{\rm SG}},\qquad(116)$$

$$g_{\rm DG} = \frac{\mathrm{d}I_{\rm DG}}{\mathrm{d}V_{\rm DG}},\qquad(117)$$

 $g_{\rm SD} = \frac{\mathrm{d}I_{\rm DRAIN}}{\mathrm{d}V_{\rm SD}}, \qquad (118)$

$$g_{\rm M} = \frac{\mathrm{d}I_{\rm DRAIN}}{\mathrm{d}V_{\rm GS}},\qquad(119)$$

где $S_{\rm ND}$ – спектральная плотность дробового шума тока стока.

Полная модель Шихмана–Ходжеса дополнительно учитывает следующие основные факторы [9]:

 Влияние ионизации на величину основных токов с помощью параметров ISR, NR, ALPHA, VK и выражений:

$$I_{\rm G} = -I_{\rm SG} - ISR \left(\exp \frac{V_{\rm SG}}{NR\phi_{\rm T}} - 1 \right) \left[\left(1 - \frac{V_{\rm SG}}{PB} \right)^2 + 0,005 \right]^{0.5M} - I_{\rm DG} - ISR \left(\exp \frac{V_{\rm DG}}{NR\phi_{\rm T}} - 1 \right) \left[\left(1 - \frac{V_{\rm DG}}{PB} \right)^2 + 0,005 \right]^{0.5M} - I_{\rm I} , (120)$$

 $I_{\rm D} = -I_{\rm DRAIN} + \begin{cases} I_{\rm DG} + \end{cases}$

+
$$ISR\left(\exp\frac{V_{\rm DG}}{NR\varphi_{\rm T}} - 1\right) \left[\left(1 - \frac{V_{\rm DG}}{NR}\right) - 1\right] \left[\left(1 - \frac{V_{\rm DG}}{NR}\right) + \frac{V_{\rm DG}}{NR}\right] + \frac{V_{\rm DG}}{NR} +$$

$$-\frac{V_{\rm DG}}{PB}\Big|^2 + 0,005\Big]^{0,5M} + I_{\rm I}\Bigg\},(121)$$
$$I_{\rm S} = I_{\rm DRAIN} + \Bigg\{I_{\rm SG} + ISR\Bigg(\exp\frac{V_{\rm SG}}{NR\omega_{\rm T}} -$$

Таблица 4. Параметры Spice-модели ПТП

$$(-1)\left[\left(1-\frac{V_{\rm SG}}{PB}\right)^2+0,005\right]^{0,5M}+I_{\rm I}$$
. (122)

В области насыщения ВАХ при нормальном включении

$$I_{\rm I} = I_{\rm DRAIN} \operatorname{ALPHA} (V_{\rm SD} - V_{\rm SG} -$$

$$-VIO$$
)exp $\frac{-VK}{V_{\text{SD}} - V_{\text{SG}} - VTO}$; (123)

в остальных случаях $I_{\rm I} = 0;$

 Барьерные ёмкости прямо смещённых p-n-переходов:

$$C_{SG} = \frac{CGS}{(1 - FC)^{1+M}} \times \left(1 - FC(1+M) + \frac{V_{SG}M}{PB}\right)$$

при $V_{SG} > FCPB$, (124)

$$C_{DG} = \frac{CGD}{(1 - FC)^{1+M}} \times \left(1 - FC(1+M) + \frac{V_{DG}M}{PB}\right)$$

Температурные зависимости параметров VTO(T), BETA(T), IS(T), ISR(T), PB(T),

при $V_{\rm DG} > FCPB;$

(125)

EG(T), CGS(T), CGD(T), KF(T), AF(T).

Параметры Spice-модели ПТП и их величины, принятые по умолчанию, приведены в таблице 4.

Основные параметры модели ПТП можно определить по выражениям, аналогичным БТ, а именно [10]: *IS* – по

(36); *ISR* – по (38); *CGS*, *CGD* – по (39)–(41); *PB* – по (41); I_{NRS} , I_{NRD} , I_{ND} – по (25) с использованием спектральной плотности шума. Кроме того, допустимо применять значения напряжения отсечки и удельной крутизны, полученные из соотношений [10]:

$$BET\Lambda = \frac{4\varepsilon\varepsilon_0 \mu_{CH} Z}{3aL}, \qquad (126)$$

$$VIO = \frac{qN_{\rm CH}a^2}{2\varepsilon\varepsilon_0},\qquad(127)$$

$$VIO_{\rm OG} = \frac{2\,qN_{\rm CH}a^2}{\epsilon\epsilon_0}\,,\qquad(128)$$

$$BET\Lambda_{OG} = \frac{\varepsilon \varepsilon_0 \mu_{CH} Z}{3aL}, \qquad (129)$$

где VTO, ВЕТА – параметры модели при модуляции толщины канала двумя р–п-переходами; VTO_{OG}, ВЕТА_{OG} – параметры модели при модуляции толщины канала одним р–п-переходом; μ_{CH} – подвижность основных носителей заряда в канале; N_{CH} –концентрация ионизированной примеси в канале; Z, L – ширина и длина затвора соответственно; a – половина толщины токопроводящей части канала при отсутствии внешнего напряжения.

При использовании модели Шихмана–Ходжеса необходимо учитывать следующие соображения (пп. 1–5):

 Модель Шихмана–Ходжеса неточна для интегральных ПТП, поскольку не учитывает влияния ряда факторов: подпороговой области ВАХ [24], паразитной ёмкости ПТП – подложка,

Обозначение	Описание	Единица измерения	Значение по умолчанию
AF	Показатель степени избыточного низкочастотного шума (фликер-шума)	-	1,0
ALPHA	Коэффициент, характеризующий зависимость тока ионизации от величины обратного напряжения на p–n-переходе затвор–сток	B-1	0
BETA	Коэффициент пропорциональности (удельная крутизна)	A/B ²	10-4
BETATCE	Температурный коэффициент ВЕТА	C-1	0
CGD, CGS	Барьерные ёмкости переходов затвор-сток, затвор-исток при отсутствии внешнего напряжения на p-n-переходах	Φ	0
EG	Ширина запрещённой зоны	эВ	1,11
FC	Коэффициент, характеризующий диапазон напряжения, в котором определена величина барьерной ёмкости прямо смещённого перехода	-	0,5
IS	Обратный ток насыщения p–n-перехода затвор–канал	A	10-14
ISR	Обратный ток насыщения, обусловленный процессами генерации-рекомбинации в ОПЗ р–п-перехода затвор–канал	A	0
KF	Козффициент избыточного низкочастотного шума	-	0
LAMBDA	Коэффициент модуляции длины канала	B-1	0
М	Показатель степени в зависимости барьерной ёмкости перехода затвор-канал от обратного напряжения	-	0,5
N	Козффициент неидеальности для <i>IS</i>	-	1,0
NR	Коэффициент неидеальности для ISR	-	2,0
PB	Контактная разность потенциалов перехода затвор-канал	В	1,0
RD	Сопротивление полупроводниковой области стока	Ом	0
RS	Сопротивление полупроводниковой области истока	Ом	0
VK	Напряжение, характеризующее наступление ионизации в переходе затвор-канал	В	0
VTO	Напряжение отсечки	В	-2,0
VTOTC	Температурный коэффициент VTO	B/°C	0
XTI	Температурный коэффициент <i>IS</i>	-	3,0

Рис. 35. Схема включения для измерения выходной вольтамперной характеристики с общим истоком для a) p-ПТП и б) n-ПТП

S (source) – исток, G (gate) – затвор, D (drain) – сток

Рис. 36. Выходная ВАХ в схеме р-ПТП с общим истоком при V_S = 0

Рис. 37. Зависимость тока стока (вверху) и выходной проводимости (внизу) р-ПТП от напряжения стока $V_{\rm D}$ при $V_{\rm S}=0$

Кривая 1 соответствует $V_{\rm G}$ = –0,5 В; кривая 2 – $V_{\rm G}$ = 0; кривая 3 – $V_{\rm G}$ = 1 В

топологической асимметрии истока и стока, конструктивно-технологического различия верхнего и нижнего затворов, неоднородного распределения примеси в канале.

 Модель Шихмана–Ходжеса приводит к погрешности расчёта уровня шумов в линейной области ВАХ. Так, пренебрегая фликер-шумом из (113) и (119), получим, что спектральная плотность шума сопротивления канала ПТП (*S*_{ND} в линейной области ВАХ) описывается выражением:

$$S_{\rm ND} \approx \sqrt{\frac{8kT}{3}} g_{\rm M} \leq \sqrt{\frac{8kT}{3}} g_{\rm MMAX} =$$
$$= \sqrt{\frac{8kT}{3R_{\rm CH}}}, \qquad (130)$$

где $R_{\rm CH}$ = (2BETA *VTO*)⁻¹ – сопротивления канала ПТП.

В то же время известно (см. (20)), что спектральная плотность теплового шума резистора $S_{\rm NR}$ определяется соотношением:

$$S_{NR} = \sqrt{\frac{4kT}{R}} \,. \tag{131}$$

Приближённая оценка уровня шума ПТП в линейной области известна давно [25] и может быть уточнена только при модернизации модели;

- Во многих случаях достаточную для инженерных применений точность моделирования можно получить следующим образом:
 - влияние подложки учесть с помощью полупроводникового диода, например, как показано на рисунке 33 для интегрального р-ПТП;
 - характеризовать топологическую асимметрию с помощью разных значений параметров модели для истока и стока (обычно RS < RD, CGS > CGD);
 - определить несколько наборов параметров модели одного и того же ПТП для описания его ВАХ в диапазоне изменения тока стока;
- Наличие сопротивлений полупроводниковых областей истока RS и стока RD приводит к уменьшению измеренного значения крутизны. Так, для схемы с общим истоком [26]:

$$g_{\rm M} = \frac{g_{\rm MEXT}}{1 - g_{\rm MEXT} RS}, \qquad (132)$$

где g_{MEXT} – крутизна «внешнего» транзистора, учитывающего сопротивления полупроводниковых областей, в схеме с общим истоком.

На измеренное значение крутизны короткоканальных ПТП значительно влияет выходная проводимость *g*_{SD} [26]:

$$g_{\rm M} = \frac{g_{\rm MEXT}^0}{1 - g_{\rm SD} R_{\rm SD} \left(1 + g_{\rm MEXT}^0 RS\right)},$$
 (133)

$$g_{\text{MEXT}}^{0} = \frac{g_{\text{MEXT}}}{(1 - g_{\text{MEXT}} RS)}, R_{\text{SD}} = RS + RD. (134)$$

Учитывая изложенное, при идентификации параметров короткоканальных ППП, а также мощных ППП, работающих с большими токами стока, рекомендуется особое внимание уделять корректному определению *RS*, *RD* и LAMBDA;

5. Болышинство интегральных ПТП имеют два разных по характеристикам затвора. Если изменяющееся напряжение поступает на верхний затвор, а постоянное напряжение – на нижний затвор, то функционирование и параметры двухзатворного ПТП можно упрощённо моделировать в Spice-подобных программах при помощи коэффициента SCALE_{BG}. При этом параметры Spice-модели VTO и BETA рассчитываются из соотношений [10]:

$$VTO = VTO_{TG0} SCALE_{BG}^2$$
, (135)

$$BET\Lambda = \frac{BET\Lambda_{TG0}}{SCALE_{BG}},$$
 (136)

MIDC

$$SCALE_{BG} = 1 - \frac{\left(1 + \frac{V_{BGS}}{VJ_{BG}}\right)^{M/BG} - 1}{\left(1 + \frac{VTO_{BG0}}{VJ_{BG}}\right)^{M/BG} - 1}, (137)$$

где VTO_{TGO} – напряжение отсечки при управлении верхним затвором и V_{BGS} = 0; $BETA_{TGO}$ – удельная крутизна ПТП при управлении верхним затвором и V_{BGS} = 0; V_{BGS} , V_{TGS} – напряжение на переходах нижний затвор–исток и верхний затвор–исток; VTO_{BGO} – напряжение отсечки при управлении нижним затвором и V_{TGS} = 0; VJ_{BG} – контактная разность потенциалов p–n-перехода нижний затвор–канал; MJBG – показатель степени для p–n-перехода нижний затвор–канал.

ИЗМЕРЕНИЕ ВЫХОДНОЙ ХАРАКТЕРИСТИКИ ПТП В СХЕМЕ С ОБЩИМ ИСТОКОМ

Для регистрации выходной ВАХ полевых транзисторов, так же как и биполярных транзисторов, применяются измерители параметров полупроводниковых приборов [19, 20], встроенные в осциллографы блоки наблюдения ВАХ [22], а также специализированные электроизмерительные приборы. Если полярность напряжения источников задана в соответствии с рисунком 35, то возможно измерение выходной ВАХ ПТП с общим истоком. Так, на рисунке 36 показано семейство графи-

WWW.SOEL.RU

ков для р-ПТП. В отличие от базы БТ, на затвор ПТП следует подавать ступеньки обратного напряжения, при этом с увеличением $|V_{GS}|$ ток стока $|I_D|$ уменьшается. Отрицательная величина тока стока на рисунке 36 обусловлена тем, что ток вытекает из стока р-ПТП, а графики при $V_{GS1} = -0,5$ В, $V_{GS2} = -0,25$ В соответствуют работе р-ПТП с прямым смещением р-п-перехода затвор-исток. В приведённых ниже математических соотношениях применяется абсолютное значение тока стока.

С помощью результатов измерений выходной ВАХ допустимо рассчитать некоторые параметры модели Шихмана–Ходжеса и определить характеристики ПТП, обычно приводимые в справочных данных:

1. Часто напряжение отсечки VTO определяют как точку перегиба графика зависимости $I_{\rm D} = f(V_{\rm SD})$ при $V_{\rm GS} = 0$. Если эта точка не очевидна, то за величину VTO принимают абсциссу точки пересечения касательных, построенных в линейной области и области насыщения ВАХ (на рисунке 36 касательные показаны пунктиром). Такая идентификация напряжения отсечки наглядна, но для интегральных ПТП, особенно короткоканальных, приводит к недопустимо большой погрешности, поэтому предпочтительным является определение параметра *VTO* как напряжения затвор–исток, при котором ток стока не превышает заданного минимального значения *I*_{DMIN}:

$$VTO = V_{GS} \operatorname{пpu} I_D = I_{DMIN},$$

$$V_{SD} = \operatorname{const} > VTO, \qquad (138)$$

причём напряжение $V_{\rm SD}$ выбирается за точкой перегиба (на рисунке $36 I_{\rm DMIN}$ = = 86,77 мкА при $V_{\rm D}$ = -2 В, $V_{\rm G6}$ = 2 В). Значение минимального тока стока для регистрации *VTO* устанавливается в зависимости от максимального тока стока $I_{\rm DMAX}$ ($I_{\rm DMIN} < 0,01I_{\rm DMAX}$). Для маломощных, среднемощных и мощных ПТП типовое значение минимального тока стока обычно составляет 10, 50 и 100 мкА соответственно;

2. Максимальный ток стока I_{DMAX} – это ток стока, соответствующий точке перегиба графика зависимости I_{D} = = $f(V_{\text{SD}})$ при V_{GS} = 0. Для интегральных ПТП целесообразно принять, что:

 $I_{\text{DMAX}} = I_{\text{D}}$ при $V_{\text{GS}} = 0, V_{\text{SD}} = VTO.$ (139)

Рис. 38. Зависимость рассчитанного по формуле (143) параметра LAMBDA от напряжения стока $V_{\rm D}$ при $V_{\rm S}=0$

Кривая 1 соответствует $V_{\rm G}$ = -0,5 В; кривая 2 - $V_{\rm G}$ = 0; кривая 3 - $V_{\rm G}$ = 1 В

По известным значениям *I*_{DMAX}, *VTO* допустимо рассчитать параметр модели BETA:

$$BETA = \frac{I_{DMAX}}{VIO^2 (1 + LAMBDA VIO)} \approx \frac{I_{DMAX}}{VIO^2};$$
 (140)

3. Выходная проводимость g_{SD}, в соответствии с рисунком 36, будет равна:

Рис. 39. Схема включения для измерения передаточной характеристики р-ПТП с общим истоком

Рис. 40. Зависимости тока стока и квадратного корня из тока стока от напряжения на затворе при $V_{\rm S}=0, V_{\rm D}=-5~{\rm B}$

Рис. 41. Рассчитанные по формулам (144), (145) параметры ВЕТА и *VTO* при $V_S = 0$, $V_D = -5$ В а) без учёта падения напряжения

на сопротивлении истока, б) с учётом падения напряжения на *RS* = 15,6 Ом

$$g_{\rm SD} \left(V_{\rm SD3} , I_{\rm D3} \right) = \frac{I_{\rm D3} - I_{\rm D3}^*}{V_{\rm SD3} - V_{\rm SD3}^*}$$

при $V_{\text{GS}} = \text{const}, V_{\text{SD}} \ge VTO - V_{\text{GS}},$ (141)

где (V_{SD3} , I_{D3}), (V^*_{SD3} , I^*_{D3}) – координаты точек на одной и той же кривой при V_{GS} = const.

Расчёт g_{SD} рекомендуется выполнять для небольших приращений тока стока $I^*_{D3} - I_{D3} < 0, II_{D3}$. Если выходную проводимость определить по графику $I_D =$ $= f(V_{SD})$ при $V_{GS} = 0$ в той её области, где проводимость сохраняет постоянное значение, т.е. $g_{SD} \approx$ const, то возможно идентифицировать параметр LAMBDA:

$$LAMBDA = \frac{1}{\frac{I_{DMAX}}{g_{SD}} - VTO} \approx \frac{g_{SD}}{I_{DMAX}}$$

при $V_{\text{GS}} = 0, V_{\text{SD}} \ge VTO, g_{\text{SD}} \approx \text{const.}$ (142)

Приближённое равенство в соотношении (142) справедливо для любых графиков V_{GS} в области насыщения ВАХ, т.е.

LAMBDA
$$\approx \frac{g_{\rm SD}(I_{\rm D})}{I_{\rm D}}$$

при $V_{SD} \ge VTO - V_{GS}, g_{SD} \approx \text{const.}$ (143)

Справедливость выполненного анализа подтверждают результаты измерений, обработанные графическим постпроцессором PSpice simulator and Probe waveform viewer системы OrCad [21] (см. рисунки 37 и 38). Так, для отображения выходной проводимости в соответствии с правилами графического постпроцессора [9] на ось У рисунка 37 выведена переменная D(Id), а для получения параметра LAMBDA на ось У рисунка 38 - D(Id)/Id. Очевидно, что выражение (143) является правильным в диапазоне токов стока от 4 до 17 мА как при прямом, так и обратном смещении р-п-перехода затвор-исток.

Расчёт параметров в соответствии с (138), (139) и (141) применяется во многих электроизмерительных приборах (например, типа Л2-78).

Для результатов измерений, показанных на рисунке 36: $I_{\text{DMAX}} = 10,71$ мА; $I_{\text{DMIN}} = 86,77$ мкА; VTO = 2 B; LAMBDA = = 0,025 B⁻¹; BETA = 2,678 мА/В²;

4. Для увеличения точности идентификации параметров целесообразно выполнять расчеты для малых приращений ΔI_D, ΔV_{SD}, ΔV_{GS} в широком диапазоне токов стока I_D и применять соотношения, вытекающие из модели Шихмана–Ходжеса, а именно:

$$\operatorname{BETA}(I_{\mathrm{D4}}) = \frac{\left(\frac{\sqrt{I_{\mathrm{D4}}} - \sqrt{I_{\mathrm{D5}}}}{V_{\mathrm{G55}} - V_{\mathrm{G54}}}\right)^2}{1 + V_{\mathrm{SD}} \operatorname{LAMBDA}} \approx$$

$$\approx \left(\frac{\sqrt{I_{\rm D4}} - \sqrt{I_{\rm D5}}}{V_{\rm GS5} - V_{\rm GS4}}\right)^2$$

при V_{SD} = const \geq VTO – V_{GS} , (144)

$$VIO = V_{\rm GS1} + \sqrt{\frac{I_{\rm D1}}{\rm BETA(I_{\rm D4})}}$$

при
$$V_{\rm SD}$$
 = const \geq VTO – $V_{\rm GS}$, (145)

где $I_{\rm D4}, I_{\rm D5}$ – ток стока при одном и том же напряжени
и $V_{\rm SD}$ и $V_{\rm GS4}, V_{\rm GS5}.$

Кроме того, необходимо учесть сильное влияние на ВАХ сопротивления истока, величину которого можно рассчитать как:

$$RS = \frac{V_{\text{GS2}} - V_{\text{GS1}}}{I_{\text{D1}} - I_{\text{D2}}} - \frac{1}{2\sqrt{I_{\text{D1}}\text{BETA}(I_{\text{D4}})}}$$
при $V_{\text{SD}} = \text{const} \ge VTO - V_{\text{GS1}}$ (146)

где I_{D1} , I_{D2} – ток стока при одном и том же напряжении V_{SD} и V_{GS1} , V_{GS2} (см. рис. 36), BETA(I_{D4}) – величина параметра ВЕТА, рассчитанная с помощью соотношения (144) при токе стока, равном I_{D4} .

Выражение (146) получено с использованием (132). Для уменьшения погрешности идентификации *RS* рекомендуется:

- измерения I_{D1}, I_{D2} проводить для малых приращений тока стока и напряжения затвор-исток около максимально возможного тока стока или небольшого прямого смещения p-n-перехода затвор-исток, при котором прямой ток через затвор не превышает ориентировочно 1 нА;
- параметр ВЕТА рассчитывать из результатов измерений при малых токах стока.

В соответствии с результатами измерений, показанных на рисунке 36, и соотношениями (144)–(146): ВЕТА(I_{D4}) = 2,434 мА/В²; *VTO* = 2,28 В; *RS*(I_{D1}) = = 15,6 Ом;*RS*(I_{D2})= 17,05 Ом. С нашей точки зрения, результаты расчёта параметров по (144)–(146) более адекватно описывают ВАХ по сравнению с (138)–(140).

ИЗМЕРЕНИЕ ПЕРЕДАТОЧНОЙ ХАРАКТЕРИСТИКИ ПТП В СХЕМЕ С ОБЩИМ ИСТОКОМ

Расчёт параметров по соотношениям (144), (145) проще выполнить с использованием результатов измерений передаточной характеристики ПТП в схеме с общим истоком в области насыщения, т.е. зависимости $I_{\rm D} = f(V_{\rm GS})$ при $V_{\rm SD}$ = const \geq

 \geq *VTO* – *V*_{GS}, зарегистрированной по схеме, приведённой на рисунке 39.

В соответствии с моделью Шихмана-Ходжеса для области насыщения ПТП справедливо соотношение:

 $\sqrt{I_{\rm D}} \approx \sqrt{\rm BETA} (VTO - V_{\rm GS}).$ (147)

Исходя из зависимости $\sqrt{I_D} = f(V_{GS})$ в области насыщения ПТП, напряжение отсечки допустимо определить как точку пересечения касательной к графику зависимости $\sqrt{I_D} = f(V_{GS})$ с осью V_{GS} , а по тангенсу угла наклона касательной – рассичитать величину \sqrt{BETA} , что идентично расчёту по соотношениям (144), (145).

Для мощных ПТП зависимость $\sqrt{I_{\rm D}} = f(V_{\rm GS})$ является нелинейной вследствие падения напряжения на сопротивлении истока RS в области больших токов стока. В этом случае измерения ВАХ для определения параметров VTO, ВЕТА рекомендуется выполнять при малых токах стока. В микромощных ПТП даже при $V_{\rm GS} \approx 0$ на зависимость $I_{\rm D} = f(V_{\rm GS})$ оказывает влияние существование подпороговой области BAX, поэтому для идентификации параметров *VTO* и BETA целесообразно использовать результаты измерений, полученные при небольшом прямом смещении p–n-перехода исток–затвор (ориентировочно, до $|V_{GS}| < 0,3$ B).

Указанные особенности идентификации параметров ПТП поясняют результаты измерений (см. рисунки 40 и 41), выполненных с помощью прибора ИППП-1 и обработанных графическим постпроцессором. Возможности графического постпроцессора позволили отобразить на одном рисунке две оси Ү, одна из которых соответствует току стока I_D, а вторая – квадратному корню из тока стока, обозначенному в соответствии с принятыми в постпроцессоре правилами как SQRT(Id). На рисунке 41a показаны рассчитанные в постпроцессоре по соотношениям (144), (145) параметры ВЕТА и VTO, т.е. на оси Y отображены переменные pwr(d(sqrt(Id)), 2) и Vg + sqrt(Id/(pwr(d(sqrt(Id)),2))).

Чтобы учесть падение напряжения на сопротивлении истока, уменьшающее V_{GS} , с помощью графического постпроцессора переменная V_G была заменена на $V_G - I_D RS$ (см. рис. 416).

Анализ рисунков 41 позволяет сделать вывод о том, что модель Шихмана–Ходжеса не вполне адекватно описывает характеристики интегрального ПТП. Так, согласно этой модели, параметры ВЕТА и *VTO* должны быть постоянными, а в реальном транзисторе они зависят от режима работы. В связи с этим рекомендуется либо определить несколько различных наборов параметров модели одного и того же ПТП для описания его ВАХ в диапазоне изменения тока стока, либо идентифицировать параметры модели по касательной, наилучшим образом совпадающей с зависимостью $\sqrt{I_D} =$ = $f(V_{GS})$, причём в обоих случаях целесообразно учесть влияние параметра *RS*, заменив переменную V_G на $V_G - I_D RS$.

Литература

- 23. Antognetti P. Semiconductor Device Modeling with SPICE. McGraw-Hill, 1988.
- 24. Brewer R.J. The barrier mode behavior of a junction FET at low drain currents. Solid-State Electronics. 1975. Vol. 18, No. 11. PP. 1013–1017.
- *Tsividis Y.P.* MOSFET modeling for analog circuit CAD: problems and prospects. IEEE J. of Solid-State Circuits. 1994. Vol. 29. No. 3. PP. 210–216.
- 26. *Chou S.Y.* Relation between measured and intrinsic transconductances of FETs. IEEE Transactions on Electron Devices. 1987. Vol. 34. No. 2. PP. 448–450.