Практический курс моделирования магнитоуправляемых датчиков положения и скорости на базе конечно-элементного программного пакета FLUX Часть 2. Магнитостатическое моделирование компонентов рабочей зоны датчика

Светлана Сысоева (Москва)

Во второй части статьи демонстрируются моделирующие возможности пакета FLUX 10.1.2 в реализации этапов магнитостатического расчёта датчика скорости ферромагнитного зубчатого ротора.

Основные концепции моделирования в пакете Flux 10.1.2

Базовым подходом к реализации конечно-элементного проекта датчика в Flux 10.1.2 является параметризация, суть которой состоит в создании и привязке параметров к геометрическому, конечно-элементному и физическому описанию компонентов датчика и устройства в целом. Альтернативная стратегия моделирования предполагает максимальное разбиение целостного описания датчика на отдельные объекты, т.е. последовательную разработку соответствующих субпроектов, представляющих собой файлы с 2D- или 3D-геометрией, сеткой и физикой параметризованных объектов как унифицированных частей, которые импортируются в финальный проект, а также параметризованные файлы – задачи.

Практическая реализация второй стратегии предполагает создание и использование в пакете Flux пользовательского банка объектов, таких как магниты, паттерны зубьев ротора, микросхемы, и пользовательского банка проектов, направленных на решение определённых задач. Банк проектов содержит ключевые параметры, подлежащие изменению в процессе решения поставленной задачи. При этом возможность включения в анализ физики и электрической схемы позволяет осуществлять физическую параметризацию и решение конечно-элементных моделей, находящихся на любой стадии геометрического описания.

Это означает, что для первичного магнитостатического описания и анализа проекта датчика скорости может быть создана и решена магнитостатическая 2D- или 3D-модель магнитной системы с геометрией на основе паттерна зуба и постоянного магнита (см. рис. 6). Такая опорная модель решается на основе образцового сценария и сохраняется в отдельном проекте, где и выполняется постобработка результатов. Затем, согласно новым сценариям решений в отдельных проектах, исследуются влияния зазора, геометрии, допусков, материалов и остаточной намагниченности магнита.

Далее к опорной геометрической модели достраиваются соседние зубья для симуляции их влияния, причём в некоторых случаях целесообразно выстраивание всего ротора, и вновь выполняется статическое исследование допусков. Задача может быть вначале решена в плоскости, т.к. влияние высоты ротора значительного интереса для первичного анализа работоспособности датчика не представляет, а затем выполнен переход к 3D- симуляции – для исследования влияния высоты, наклонов и вращений.

На данном этапе магнитостатического моделирования могут анализироваться и сравниваться различные типы магнитных систем с минимальными затратами вычислительных и временных ресурсов. Далее магнитостатическое применение в рамках уже нового проекта может быть заменено на электромагнитные динамические применения Transient Magnetic (исследование переходных процессов) или Steady state AC Magnetic (исследование устойчивых гармонических процессов), а затем - на магнитотепловое. Результатом мультипроектного подхода является созданный банк проектов - шаблонов - и максимально полное исследование поведения оптимальной магнитостатической системы.

Во второй части статьи на примерах показаны реализация и развитие обозначенной концепции мультипроектного параметрического моделирования датчика ферромагнитного зубчатого ротора. На первом этапе рассматривается только сокращённая магнитостатическая модель магнитной системы в рабочей зоне датчика.

Рис. 6. Магнитостатическая задача для конечно-элементного моделирования, решаемая в рамках данной статьи

(а) Измерительная конфигурация датчика ферромагнитного зубчатого ротора, взятая за основу (1 – ферромагнитный зубчатый ротор; 2 – датчик Холла;
 3 – обратносмещающий магнит; 4 – ИС Холла); (б) образцовая геометрическая магнитостатическая модель (1 – паттерн зуба ротора;

2 - обратносмещающий магнит)

Краткая теория магнитостатики

Фундаментальные законы электромагнетизма – без наличия подвижных тел в домене – описываются уравнениями Максвелла, которые приведены в таблице 3. Для различных сред действительны следующие соотношения:

для магнитной среды: $\vec{B} = \mu \vec{H}$, для диэлектрической среды:

$$\tilde{D} = \varepsilon \tilde{E}$$
, (1)

для проводящей среды: $\vec{j} = \sigma \vec{E}$,

где μ – магнитная проницаемость, σ – электрическая проводимость, ε – диэлектрическая проницаемость.

В случае низкочастотных (квазистатических) переменных полей выражения электрических полей могут быть отсоединены. На практике отсоединение этих уравнений возможно при анализе работы на частотах до 10 ГГц. Но это зависит также от материалов и размеров домена исследования.

Для чисто магнитной системы применяется гипотеза квазистатического состояния, т.е. можно пренебречь вариациями электрической плотности потока *D* и уравнением

$$\frac{\partial D}{\partial t} = 0$$

Эта гипотеза остаётся верной до превышения установленного частотного предела. Таким образом, уравнения для магнитной системы могут быть записаны в виде, показанном в таблице 4. Они дополняются соотношениями для сред и материалов в форме *B*(*H*)- или *H*(*B*)-зависимостей:

$$\vec{B} = \mu \vec{H} , \ \vec{B} = \mu_r \mu_0 \vec{H} ,$$
$$\vec{B} = \mu_r \mu_0 \vec{H} + \vec{B}_r , \qquad (2)$$

где μ_r – относительная проницаемость, μ_0 – проницаемость вакуума, B_r – остаточный магнитный поток (магнитная индукция) постоянных магнитов (характеристика кривой намагничивания), связываемая с остаточной намагниченностью и выражаемая как

$$\bar{B}_r = \mu_0 \bar{M}_r$$

где M_r – остаточное намагничивание. Намагничивание материала связано с остаточным намагничиванием посредством выражения:

$$\vec{M} = \vec{M}_r + c_m \vec{H}$$

где c_m –магнитная восприимчивость материала, $c_m = 1 - \mu_r$.

$$\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M} \,,$$

здесь $\mu_0 \vec{M} = \vec{J}$ – магнитная поляризация.

Альтернативные формы записи уравнений следующие:

$$\vec{H} = v\vec{B}, \ \vec{H} = v_r v_0 \vec{B}, \ \vec{H} = v_r v_0 \vec{B} - \vec{H}_c, \quad (3)$$

где v – удельное магнитное сопротивление, v₀ – удельное магнитное сопротивление вакуума v₀ = $1/\mu_0 = 1/(4\pi \times$ × 10⁻⁷) [м/Гн], H_c – коэрцитивная сила (для постоянных магнитов). К ним также может быть добавлено соотношение для проводящей среды $\bar{J} = \sigma \vec{E}$, но уравнения, которые используются для решения чисто магнитостатических проблем, могут не включать закон Фарадея и данное соотношение для проводящей среды.

Таким образом, условия вычислений для магнитостатических систем следующие (см. таблицу 5):

- переменные состояния являются независимыми во времени d/dt = 0;
- вычисления применяются только для В- и Н-полей;
- D-и Е-поля не вычисляются.

Магнитостатическое поле моделируется при наличии постоянных токов и/или постоянных магнитов. Для рас-

Таблица 3. Уравнения Максвелла для различных сред (в дифференциальной форме)

$\operatorname{rot}\!\left(\dot{E}\right) = -\frac{\partial \dot{B}}{\partial t}$	Закон Фарадея
$\operatorname{div}(\dot{B}) = 0$	Закон Гаусса для магнетизма
$\operatorname{div}(\dot{D}) = \rho$	Теорема Гаусса
$\operatorname{rot}(\dot{H}) = \bar{j} + \frac{\partial \dot{D}}{\partial t}$	Закон Ампера

Таблица 4. Уравнения Максвелла для магнитной системы

$\operatorname{rot}\left(\dot{E}\right) = -\frac{\partial \dot{B}}{\partial t}$	Закон Фарадея	
$\operatorname{div}(\dot{B}) = 0$	Закон Гаусса для магнетизма	
$\operatorname{rot}(\dot{H}) = \tilde{j}$	Закон Ампера	

59

Рис. 7. Примеры штампованных ферромагнитных зубчатых роторов

(а) Ротор с числом зубьев K = 32;
(б) ротор с K = 12.

сматриваемой задачи (для изучения только перспективных магнитоуправляемых датчиков ферромагнитного зубчатого ротора) даже закон Ампера может не использоваться. Но в дальнейшем тема, безусловно, будет обобщаться с расчётом на изучение поведения не менее перспективных индуктивных и магнитоиндуктивных устройств.

Принципиальные результаты, которые могут быть получены с магнитостатическим применением в пакете Flux v.10.1.2 (в том числе и за пределами рассматриваемой задачи), включают:

- распределения напряжённости магнитного поля (*H*), плотности магнитного потока (*B*) и плотности магнитной энергии (*dW_m*);
- магнитную энергию (W_m) в частной области исследования или во всём домене, силу (F_m) и магнитный крутящий момент в области;
- магнитный поток через сечение обмотки.

Далее возможно вычисление других величин.

Для решения уравнений магнитостатики в пакете Flux используются две модели:

• векторная модель, которая использует магнитный векторный потенциал (\vec{A}) ($\vec{B} = rot(\vec{A})$);

Таблица 5. Уравнения Максвелла для магнитостатики

$\operatorname{div}\left(\vec{B}\right) = 0$	Закон Гаусса для магнетизма	
$\operatorname{rot}(\dot{H}) = \dot{J}$	Закон Ампера	

скалярная модель, которая использует магнитные скалярные потенциалы (записываемые как ф_{tot} или φ_{red}). Для 2D-применений в пакете Flux доступна только векторная модель. Для 2D- и 3D-применений предлагаются две модели – векторная и скалярная соответственно. Векторная модель используется по умолчанию (автоматически) 2D-решателем Flux2D и 3D-решателем Flux2D и 3D-решателем Flux3D для решения 2D-применений; 3D-решатель Flux3D автоматически использует скалярную модель 3D-применений.

Геометрическое моделирование магнитной системы

В рамках поставленной задачи стратегия геометрического описания (в 2D-области) магнитной системы датчика ферромагнитного зубчатого ротора (см. рис. 66) включает:

- создание проекта паттерна зуба ротора;
- создание контура вращения магнита в отдельном проекте;
- создание финального проекта магнитной системы, импортирование и взаимное позиционирование геометрических объектов магнита и паттерна зуба ротора.

В финальном 2D-проекте возможно добавление 2D-объекта контура продольного сечения магнита.

3D-моделирование геометрии объекта включает:

- выдавливание созданных контуров (контура) 2D-паттерна зуба;
- выдавливание контура вращения/сечения магнита;
- позиционирование объектов;
- добавление новых геометрических 2D- или 3D-объектов.

Бывают объекты с более сложной геометрией, чем показанная на рисунке 6, включающая скругления, фаски и другие элементы. Примерами являются ферромагнитные зубчатые роторы, показанные на рисунке 7. Для таких объектов разрабатываются либо упрощённые модели магнитных систем, либо уточнённые 2D/3Dмодели, и все их также целесообразно сохранять в отдельных проектах. В этом случае стратегия 3D-моделирования аналогична описанной выше. Создание финального 3D-проекта магнитной системы, импортирование и 3D-позиционирование объектов является тогда третьим этапом моделирования.

Все эти действия направлены на создание структурированного пользовательского банка объектов и базовых проектов. По результатам моделирования можно сравнить три ротора, аналогичных тем, что разрабатывались в разное время для автомобилей ГАЗ и ВАЗ.

Создание проекта 2D-паттерна зуба в рабочей среде Flux

Работа начинается с запуска супервайзера *FluxSupervisor 10.1.2* и выбора вкладки *Flux2D* в менеджере программ; версия пользователя должна быть стандартной (см. рисунки 1 и 2 в первой части статьи).

Программа *Preflux*, являющаяся препроцессором, описывает геометрию, сетку и физические свойства и запускается из дерева менеджера программ *FluxSupervisor* двойным кликом левой кнопкой мыши по строке *Geometry&Physics*.

В открывшемся окне *Preflu2D 10.1.2* пользователю вначале доступны только два пункта меню: *Project*, который по команде *Project*, *New* предоставляет пользователю возможность создания нового проекта, и *Help*. Открывается новый проект под названием ANONYMOUS (см рисунок 8а).

Окно проекта Preflux, который будет разрабатываться, на данном этапе представляет собой набор средств для построения геометрии устройства, наложения сетки на домен вычислений, визуализации устройства в течение шагов конструирования. Основные зоны окна включают:

- дерево данных, которое отображает все единичные данные (*entities*) проблемы в трёх структурах;
- графическую зону, отображающую графические *entities*;
- зону истории, в которой отображаются команды на языке Python.

Все команды *Preflux* доступны в меню и вызываются посредством пиктограмм, расположенных на панели инструментов.

Работа над проектом начинается в стандартном геометрическом контексте *Geometry*, что показывает пиктограмма в правом верхнем углу окна. Контекст может выбираться стрелками в правом верхнем углу окна, и от этого выбора зависит, какие панели инструментов доступны пользователю. В программе *Preflu2D* существует три контекста: *Geometry*, *Mesb*, *Physics*.

Рис. 8. Иллюстрация процесса создания двумерной модели рисунка ротора в программе Preflu2D v.10.1.2

(a) Окно нового проекта, созданного в программе *Preflu2D*, и его основные зоны (с геометрическим контекстом); (б) окна создания нового параметра PI и задания его как функции – встроенной константы в окне редактора формул и параметров; (в) окно создания и ввода параметров СК; (г) созданные точки рисунка, отображённые в графической зоне вместе с их порядковыми номерами; (д) окно одновременного редактирования массива параметров, активированное по команде *Edit array*; (е) окно создания первого сегмента линии; (ж) окно создания второго сегмента линии, активированное в цикле; (з) окно создания дуги окружности

Группы панелей инструментов Элементы/оригинальные названия	Назначение группы и каждого элемента	
》圖:從,也: 大之後	Создание геометрических единичных объектов:	
Create a new Geometric Parameter 🔐	Создание нового геометрического параметра	
Create a new Coordinate System 🍇	Создание новой координатной системы	
Create a new Point 💽	Создание точки	
Create a new Line 🎭	Создание линии	
Create a new Transformation 🔛	Создание трансформации	
Create a new Infinite Box 👞	Создание/добавление бесконечного бокса	
Create a new Symmetry 📠	Создание/добавление симметричности модели	
Create a new Periodisity 🕍	Создание/добавление периодичности (вращения вокруг оси Z или трансляций по X- и Y-осям)	
Propagate points (lines, faces) 🗽 🦛 🦃	Распространение/выдавливание точек, линий, распространение контуров	
Build faces 🔊	Построение контуров	
Compute 🧖 🧖 🦉 🍇	Вычисление геометрических значений	
Check geometry	Проверка геометрии	
Enter «healing» context	Активация контекста поиска дефектов	
Display label of points and lines 📭 🥙	Отображение опорных номеров точек и линий	

Таблица 6. Назначение кнопок панелей инструментов для геометрического конструирования (доступных с геометрическим контекстом)

После активации геометрического контекста доступны шесть панелей инструментов, назначение которых в самом общем виде представлено в таблице 6, где подробно разъяснено назначение некоторых команд, которые будут использованы при построении геометрии рисунка. Получить более подробную информацию о работе каждой команды можно в системе помощи, которая вызывается из пункта меню Help, Contents посредством клика по кнопке панели инструментов или из диалогового окна по кнопке ®. Систему помощи можно активизировать также из окна Flux Supervisor.

Эти команды позволяют обеспечить построение геометрической модели с использованием геометрических параметров, координатных систем и трансформации, которые также являются единичными объектами.

Какие именно средства использовать – решается в процессе анализа устройства. Параметры как единичные объекты, упрощающие описание других единичных геометрических объектов (точек и линий) и облегчающие построение модели, создаются перед вводом других данных на их основе. Ещё один важный момент: на практике штампованный ротор будет изготавливаться выштамповкой впадин, но в программе Flux3D моделирование выполняется именно как выдавливание.

Предлагается такая последовательность 2D-моделирования, которую можно выполнять как в программах *Preflu2D* и *Flux3D*:

Таблица 7. 🛛	Сравнительные	геометрические	характеристики	трёх типов	роторов
--------------	---------------	----------------	----------------	------------	---------

Параметры	Ротор 1	Ротор 2	Ротор З
Внешний радиус ротора TOOTH_OR	29	36	
Толщина зуба ТООТН_ТН	5	1	,5
Глубина ТООТН_DEPTH	5 или TOOTH_TH	3 или 2*Т	OOTH_TH
Внутренний радиус паттерна зуба TOOTH_IR	TOOTH_OR- TOOTH_DEPTH = 24	TOOTI TOOTH_D	H_OR- EPTH = 33
Внутренний радиус, ограничивающий рабочую часть паттерна зуба TOOTH_WIR	TOOTH_OR-TOOTH_TH		
Ширина зуба – длина сегмента окружности TOOTH_LINE	7	3,5	7
Количество зубьев ТООТН_К	12	32	12
PI	Pi()		
Угол сектора периода кодирования GAMMA	360/TOOTH_K		
Период кодирования Т	2*Pi()*TOOTH_OR /TOOTH_K		
Ширина слота – длина сегмента окружности SLOT_LINE	E T-TOOTH_LINE		
Угол сектора паттерна зуба ВЕТА	TOOTH_LINE*180/PI/TOOTH_OR		
Угол сектора рисунка слота SIGMA	SLOT_LINE*180/PI/TOOTH_OR		
ROTOR_HOLE_R	15	30	
Высота зуба ТООТН_НGНТ	14	7	
Высота ротора ROTOR_HGHT	14 или TOOTH_HGHT (TOOTH_HGHT+ TOOTH_R_O)	10 (TOOTH_HGHT+ TOOTH_R_O)	
Внутренний радиус сгиба зуба TOOTH_R_I	0	1	,5
Внешний радиус сгиба зуба TOOTH_R_O	0		3

- геометрическая параметризация. Для облегчения изменения размеров элементарных рисунков и роторов, показанных на рисунках 6 и 7, создаются параметры, сведённые в таблицу 7;
- для позиционирования геометрии ротора в финальный проект создаётся параметр ANGLE_Z = 0, определяющий угловое положение ротора;
- создание цилиндрической системы координат (СК) CoordSys_ROTOR с миллиметрами и градусами в качестве единиц измерения, определяемой относительно глобальной СК пакета с началом отсчёта в точке её центра (0, 0), соответствующим центру создаваемого ротора;
- создание точек паттерна зуба посредством введения их параметрических координат в СК ротора (см. таблицу 8);
- графическое соединение точек линиями, координата Z которых при переносе 2D-геометрии в 3D-модель будет равной (контур выштамповки зуба без скруглений и рисунок верхней части ротора, ограниченный отверстием для посадки на вал и геометрическими пределами прорези).

Создать новый геометрический объект в программе *Preflu2D* можно с помощью соответствующей команды главного меню или кнопки панели инструментов. Для нового параметра предназначена команда *Geometry*, *Geometric Parameter*, *New*. Кроме этого, в пакете Flux существует возможность вызова команд из дерева данных. Например, для создания нового геометрического параметра необходимо левой кнопкой мыши выбрать в дереве данных последовательно *Geometry*,

Geometric Tools, Geometric Parameter (см. рис. 8а) и вызвать команду двойным щелчком левой кнопки по выбранной строке или посредством команды контекстного меню New, вызываемого одиночным щелчком правой кнопкой мыши. Будет открыто диалоговое окно ввода названия и значения параметра (которое инициализируется после применения названных способов или автоматически после введения каждого параметра) (см. рис. 8б). Названия параметров вводятся в поле Name of Parameter*. Значения вводятся с клавиатуры в поле Algebraic Expression for the parameter*, для которого по умолчанию выбрана вкладка Definition. Поля, обязательные к заполнению, в интерфейсных окнах Flux маркируются звездочкой (*). Во всех окнах доступна так называемая онлайновая система помощи (при автономном просмотре), отмеченная специальным значком.

Геометрические параметры определяются названием и алтебраическим выражением, которое может включать константы (см. рис. 8б) и арифметические операторы (+, –, *, /, **). При определении параметра пакет Flux допускает вызов функций, например, константы π (см. рис. 8б). Числовое значение любого параметра является независимым по отношению к системе координат, управляющей единицами измерения.

После создания параметры отобразятся в дереве данных. Окно ввода нового параметра активизируется автоматически; выход из последовательности осуществляется кнопкой *Cancel.*

Аналогично осуществляется создание СК ротора (см. рис. 8в). Вызов окна создания СК возможен через меню *Geometry, Coordinate System, New* посредством соответствующей кнопки панели инструментов или из дерева данных (*Geometry, Geometric Tools, Coordinate System, New*).

Далее создаются точки паттерна зуба в соответствии с таблицей 8. В цилиндрической координатной системе первой координатой является радиус, второй – угол поворота в плоскости, третьей – высота.

Вызов окна создания новой точки также осуществляется из меню *Geometry, Point, New* посредством соответствующей кнопки панели инструментов или из дерева данных (*Geometry, Geometric Entities, Point, New*). Выход из любой последовательности создания в пакете Flux осуществляется кнопкой *Cancel*. После создания точки отобразятся в дереве данных и в графической зоне (см. рис. 8г).

Точки 9 и 10 могут быть созданы для моделирования роторов 2 и 3. Созданные точки могут быть отредактированы, удалены и созданы вновь. В пакете Flux существует возможность отмены команд кнопкой *Undo*; соответствующая команда также вызывается из меню *Tools*. О команде *Edit array* следует сказать особо (см. рис. 8д). Данная команда предоставляет пользователю возможность одновременного редактирования всех созданных объектов в одном окне. Кнопка *Apply* позволяет применить изменения без закрытия окна, кнопка *OK* закрывает окно.

Графическое соединение точек линиями выполняется командой *Line*, вызываемой из пункта меню *Geometry*, *Line*, *New* посредством кнопки панели инструментов или из дерева данных (*Geometry*, *Geometric Entities*, *Line*, *New*). Существуют различные типы линий, которые могут быть созданы пользователем вручную; основными типами являются сегменты (отрезки прямой) или дуги. Оба типа линий требуются для создания геометрии паттерна зуба и впадины роторов.

В открывшемся диалоговом окне для создания сегмента в поле *Туре of line* выберем Segment defined by Starting and Ending Points (см. рис. 8е) и укажем в графической зоне точки 1 и 2. Созданная линия отобразится в графической зоне. Сегменты - отрезки прямых линий - формируются начальной и конечной точками, при этом направление распространения не важно. При вводе второго сегмента вид диалогового окна меняется (см. рис. 8ж). В новом окне New Segment Line... пользователь может выбирать две точки следующей линии из открывающихся списков полей Boundary Points или в графической

зоне. Нумерация линий ведётся автоматически. Можно увидеть на экране номера созданных линий, если включен пункт меню *Display Display line numbers* или активирована соответствующая кнопка.

Для создания дуги окружности используется та же команда Create a new line, но перед её активацией должен быть выполнен выход с командой Cancel из послеловательности созлания сегментов. На вкладке Geometric Definition затем выбирается тип линии Arc defined by its radius, starting and ending points, при этом необходимо учитывать, что выбор стартовой и конечной точек влияет на ориентацию дуги, которая в пакете Flux принята против часовой стрелки. Для рассматриваемой задачи дуги окружностей определяются в CK COORDSYS ROTOR. Последовательность создания окон активируется автоматически (см. рис. 83). В программе Preflu2D также возможно автоматическое создание контура паттерна зуба, наложение сетки и определение применения и физических свойств.

На данном этапе построение 2D-геометрии рисунка, общего для всех трёх роторов, можно завершить.

Активируем контекст *Mesb*, вид панелей инструментов при этом изменится (см. рис. 9). Кнопочной командой *Create a new mesb points* создаются три точки сетки, их можно выделять цветом на вкладке *Appearance*:

MeshPoint_CENTER = 4 MM, MeshPoint_ROTOR = 2.5 MM, MeshPoint_ROTOR_TOOTH_GAP = 1.5 MM.

Текущий проект можно сохранить в новой папке D:\Cedrat\ Soel_Flux_Tutorial по команде Project, Save. Для проекта рисунка ротора выберем, к примеру, имя Pattern_rotor_2D.FLU. Затем на основе созданного проекта можно будет создать модифицированные проекты Pattern rotor 2D v1.FLU и

Таблица 8. Описание т	очек паттерна зуба и впади	ны посредством пара	метрических координат
-----------------------	----------------------------	---------------------	-----------------------

	Координатная окотомо	Локальные цилиндр	ические координаты
Порядковый помер точки	координатная система	первая (R)	вторая (Ө)
1	COORDSYS_ROTOR	TOOTH_OR	-BETA/2
2		TOOTH_IR	-BETA/2
3		TOOTH_IR	BETA/2
4		TOOTH_OR	BETA/2
5		ROTOR_HOLE_R	-BETA/2
6		ROTOR_HOLE_R	BETA/2
7		ROTOR_HOLE_R	GAMMA-BETA/2
8		TOOTH_WIR	GAMMA-BETA/2
9 (только для роторов 2 и 3)		TOOTH_WIR	BETA/2
10 (только для роторов 2 и 3)		TOOTH_WIR	-BETA/2

Рис. 9. Иллюстрация процесса конечно-элементного описания 2D-модели рисунка ротора в программе Preflu2D v.10.1.2

Вид окна текущего проекта в контексте Mesh вместе с диалоговым окном создания точки сетки

Pattern_rotor_2D_v2.FLU для двух других роторов.

Теперь программу *Preflu2D* можно закрыть и вызвать модуль *Flux3D* из окна супервайзера, переключившись на вкладку *Flux3D* дерева менеджера программ.

Создание проекта ЗD-паттерна зуба в рабочей среде Flux

Работа возобновляется в окне супервайзера *FluxSupervisor 10.1.2* с выбором вкладки *Flux3D* в менеджере программ; версия пользователя должна быть стандартной.

В окне *Flux3D* по команде *Project, New* пользователю доступно создание нового проекта, но если какой-то проект уже открыт, его необходимо закрыть командой *Project, Close*. Новый проект под названием ANONYMOUS открывается со стандартным геометрическим контекстом *Geometry*.

По команде *Project, Save* запишем его под именем *Pattern_rotor_3D.FLU*. Импортирование данных из 2D-проекта осуществляется по команде главного меню *Project, Import, Import Flux object* (см. рис. 10а). Все данные – и геометрические, и относящиеся к этапу генерации сетки – в результате выполнения команды отобразятся в дереве данных, графические данные – также и в графической зоне (см. рис. 10б).

В текущем контексте *Geometry* для формирования контуров и объёмов

рабочей части паттерна зуба в 3D-проекте необходимо создать трансформацию – трансляцию TRANSF_TOOTH_Z в COORDSYS_ROTOR на высоту TO-OTH_HGHT (см. рис. 10в). Команда создания трансформации вызывается из дерева данных (*Geometric Tools, Transformation*) посредством соответствующей кнопки панели инструментов или из главного меню (*Geometry, Transformation, New*).

Эта трансформация затем должна быть применена для выдавливания контура зуба, который в программе Flux строится автоматически (кнопка *Build faces*, команда *Geometry, Build*, *Build faces*). Для ротора 1 (см. таблицу 7) данная команда может применяться для всех контуров, ограничивающих паттерн зуба и впадины (см. рис. 10г); для роторов 2 и 3 возможно применение упрощённой модели только с контуром, формирующим рабочую часть зуба.

Роторы для автомобилей ВАЗ имеют наиболее сложную геометрию. Уточнённые модели роторов целесообразно строить именно в программе *Flux3D*. На практике штампованный ротор будет изготавливаться выштамповкой впадин, но в программе *Flux3D* моделирование выполняется как выдавливание. Стратегия моделирования этих роторов предполагает также: • создание трансформации/трансля-

ции TRANSF_TH в COORDSYS_RO-TOR для формирования контуров и объёмов верней части ротора и крайних точек прорези;

- создание сферической СК COORD-SYS TOOTH;
- создание трансформации углового типа TRANSF_TOOTH_ROT в COORD-SYS_TOOTH для формирования закруглений зубьев.

К аспектам моделирования этих роторов, которые выходят за рамки учебных проектов, целесообразно вернуться в последующих публикациях.

Теперь можно проверить геометрию модели командой *Check Geometry* (рекомендуется выполнять непосредственно перед созданием объёмов). Если программа не обнаруживает геометрических дефектов, в зоне истории можно увидеть сообщение:

Geometry is correct.

Далее следует этап выдавливания контура посредством применения трансформации TRANSF_TOOTH Z для всех созданных контуров. Посредством кнопки Extrude faces (или из пункта меню Geometry, в котором последовательно выбираются подпункты Extrude и Extrude faces) вызывается диалоговое окно Extrude faces. В этом окне из списка выбираются контуры для выдавливания (все - с выбором Select all, или выбираемые в графической зоне с удерживаемой нажатой клавишей CTRL), однократно применяемая (1 в поле ввода Number of times to apply the transformation) трансформация, а также параметр Add Volumes and associated extrusion Mesh Generator, означающий подключение объёмов и ассоциированного генератора сетки. Результат объёмного моделирования отобразится в графической зоне, а в дереве данных будут показаны новые сгенерированные программой контуры и объёмы. Результат выполнения команды вместе с активированным автоматически окном применения трансформации показан на рисунке 10л.

На данном этапе можно переходить к генерации сетки. Назначение трёх точек сетки следующим геометрическим точкам MeshPoint_CENTER – Point5, Point6, Point7, MeshPoint_RO-TOR – Point2, Point3, Point4, Point8, MeshPoint_ROTOR_TOOTH_GAP – Point1 и Point4 осуществляется вызовом кнопочной команды Assign mesh points to points (см. рис. 10е). Также для этого в пункте главного меню сущест-

Рис. 10. Иллюстрация процесса 3D-моделирования рисунка ротора в программе Flux3D v.10.1.2

(a) Этап импортирования данных из 2D-проекта; (б) результат импортирования данных, отображённый в дереве данных и графической зоне; (в) диалоговое окно создания новой трансформации; (г) результат автоматического построения контуров (команда *Build Faces*); (д) результат применения команды *Extrude faces* вместе с автоматически активируемым окном выполнения команды; (е – к) конечно-элементное моделирование: (е) вид текущего проекта в контексте Mesh с результатом назначения точек сетки на этапе циклической активации диалогового окна; (ж) результат выполнения команды генерации сетки для линий вместе с окном редактирования свойств линии сетки; (з) результат выполнения команды генерации сетки для поверхностей; (и) результат выполнения команды генерации сетки для объёмов; (к) результат выполнения команды генерации элементов второго порядка

вует команда Assign mesh information, Assign mesh point to points.

Для контроля плотности распределения узлов по высоте можно создать линию MESHLINE_HGHT арифметического типа, например, с 8 сегментами (см. рис. 10ж), а затем выполнить её назначение геометрической линии, выбранной в графической зоне, с помощью команды Assign mesh information, Assign mesh line to lines. Существуют и другие возможности выбора в контекстном меню: например, для назначения точки MeshPoint_RO- TOR_TOOTH_GAP – точкам Point1, Point4 посредством команды *Selection by line* можно выбрать линию 3 и задействовать кнопку *Union*.

Результаты последовательного выполнения команд генерации сетки для линий (*Mesh, Mesh Lines*), для по-

Рис. 10. (Продолжение)

верхностей (Mesh faces), для объёмов (Mesh Volumes) и генерации элементов второго порядка (Mesh, Generate second order elements) показаны на рисунках 10ж – 10к.

В итоге будет создан элементарный 3D-рисунок ротора. Проект можно сохранить и закрыть, но перед сохранением сетку целесообразно удалить (*Delete Mesb*) и выполнить смещение СК COORDSYS_ROTOR на высоту –TO-OTH_HGHT/2. В будущих разработках и в версиях пакета Flux можно будет начинать описание модели сразу в программе *Flux3D*.

Краткое описание 2D/3D-моделирования магнита

- 1. Создание и сохранение нового проекта MAGNET 3D.FLU;
- 2. Для позиционирования тела магнита в финальном проекте создаются две локальные декартовы СК: Coord-Sys MAIN с центром в нулевой точке глобальной СК пакета и Coor-Sys MAG SENSOR, которая определяется как дочерняя относительно CoordSys MAIN, с точкой отсчёта, смещённой по оси Х на 31 мм. В проекте магнитной системы это расстояние затем может быть изменено на параметрическое значение, образуемое внешним радиусом зуба ротора, воздушным зазором, толщиной ИС, расстоянием между ИС и магнитом и половиной его высоты. Все прочие параметры координат точек Origin и углов вращения для обеих СК задаются как нулевые;
- 3. Создаются числовые параметры: радиус MAGNET R = 4 мм, высота MAG-

Таблица 9. Геометрическое описание контура вращения магнита посредством точек в COORDSYS MAG SENSOR

Порадковый номер тонки	Координатиза система	Локальные декар	отовы координаты
порядковый номер точки	координатная система	первая (Х)	вторая (Ү)
1	CoordSys_MAG_SENSOR	0	0
2		0	MAGNET_R
3		MAGNET_HGHT	MAGNET_R
4		MAGNET_HGHT	0

NET_HGHT = 6 мм, угол поворота магнита относительно ротора в финальном проекте ANGLE STATOR Z = 0;

- 4. Создаются четыре точки и линии контура вращения магнита в плане ХОУ, переключение к которому осуществляется по команде *View*, *Z Plane view* в соответствии с таблицей 9;
- Точки вручную соединяются линиями;
- 6. Выполняется автоматическое построение контура вращения (*Build faces*);
- 7. Создаётся трансформация TRANS_ROT_X углового типа Rotation defined by angles and existing pivot point в СК CoordSys_MAG_SEN-SOR с опорной точкой Point1, углом вращения относительно оси X – 90°, углами вращений – относительно осей Y и Z – нулевыми;
- 8. Происходит выдавливание как четырёхкратное применение трансформации TRANS_ROT_X для создания 15 новых контуров и четырёх объёмов с генератором MeshGeneratorExtrusive_Transf_ROT_X, который автоматически создаётся программой Flux на этапе построения объёмов с параметром Add vol-

Рис. 11. Визуализация основных этапов геометрического и конечно-элементного описания магнита

(a) Результат выполнения этапа геометрического описания; (б) результат назначения точек и линии сетки геометрическим точкам и линиям; (в) результат наложения сетки на линии, контуры и объёмы

umes and associated extrusion mesh generator.

Геометрическое описание магнита завершено. Результат выполнения этапа геометрического моделирования показан на рисунке 11а. Основные этапы конечно-элементного описания магнита включают:

- создание точки сетки Mesh-Point_MAGNET с шагом в 1 мм;
- привязку к четырём геометрическим точкам контура вращения;
- создание одной линии сетки MeshLine_MAGNET для контроля числа узлов на линии в направлении экструзии;
- назначение линии сетки четырём линиям – дугам внешнего контура с одной стороны.

Результат назначения точек и линии сетки геометрическим точкам и линиям показан на рисунке 116.

Заключительный этап – наложение сетки на линии, контуры и объёмы.

Для визуализации результата, показанного на рисунке 11в, рекомендуется последовательное выполнение команд Mesb, Mesb, Mesb lines, Mesb faces, Mesb volumes и команды Mesb, Mesb, Generate second order elements.

Следующий этап – сборка магнитной системы. Перед импортированием рекомендуется удалить сетку. Теперь можно сохранить и закрыть проект.

Продолжение следует