Проектирование активной антенны для системы ГЛОНАСС

Александр Курушин, Сергей Матвеев (Москва)

С помощью электродинамического подхода выполнен анализ активной антенны, состоящей из планарной антенны и транзисторного СВЧ-усилителя. Пассивная излучающая структура рассчитана в программах HFSS и Microwave Office. Проанализирована схема тестирования активной антенны, состоящая из рупорной антенны и линии связи. Приведена формула для расчёта коэффициента шума структуры, в которой тестируется активная антенна системы ГЛОНАСС.

Введение

На приёмную антенну системы глобального позиционирования ГЛОНАСС, наряду с полезными сигналами спутников, действуют различные поля естественного и искусственного происхождения. Кроме этого, антенна генерирует тепловой шум.

При оценке свойств антенного тракта должны быть учтены все источники случайных флуктуаций, поскольку они влияют на такую обобщённую характеристику, как эффективная темпера-

Рис. 1. Структурная схема тестирования, состоящая из рупорной антенны, пространства между рупорной и тестируемой антенной и усилителя MGA

Рис. 2. Два метода объединения неизлучающей цепи (усилителя и электродинамической структуры)

тура антенны [1]. Последняя зависит от диаграммы направленности и тепловых потерь в антенне.

Стандартные измерительные приборы измеряют коэффициент шума, который является наиболее универсальной и широко распространённой характеристикой для сравнения шумовых свойств систем и устройств. В измерителе коэффициента шума на входе испытуемого четырёхполюсника устанавливается калиброванный генератор шума (шумовая трубка). Тогда измеритель коэффициента шума рассчитывает значение:

$$K_{\rm III} = \frac{P_{\rm III,BMX}}{P_{\rm III,F,BMX}},$$
(1)

где $P_{\text{III.BЫХ}}$ – мощность шума на выходе при воздействии всех источников шума, $P_{\text{III.T.BЫХ}}$ – мощность шума на выходе, определяемая только мощностью генератора шума на входе (при идеализации четырёхполюсника).

ł

Выражение для коэффициента шума четырёхполюсника [2], достигаемое при коэффициенте отражения на входе Г_г, имеет вид:

$$K_{\rm III} = K_{\rm III,MHH} +,$$
$$+ \frac{4r_n}{\left|1 + \Gamma_{\rm opt}\right|^2 \left(1 - \left|\Gamma_{\Gamma}\right|^2\right)} \left|\Gamma_{\Gamma} - \Gamma_{\rm opt}\right|^2, (2)$$

где $K_{\text{III.MИН}}$ – минимальный коэффициент шума, достигаемый при оптимальном коэффициенте отражения на входе $\Gamma_{\text{опт}}$, r_n – шумовое сопротивление.

Из выражения (2) видно, что коэффициент шума активной антенны, состоящей из антенны и усилителя, зависит от степени согласования между ними [3, 4]. Антенна, как пассивная, так и с усилителем в её составе, является двухполюсником (однопортовой схемой). Поэтому для тестирования активной антенны как четырёхполюсника (двухпортовой структуры) необходимо создать измерительную систему с двумя антеннами, т.е. установить рупорную антенну напротив тестируемой антенны (см. рис. 1).

Чтобы оценить собственные тепловые потери тестовой антенны, необходимо сравнить затухание от порта 1 к порту 2 с учётом и без учёта потерь в тестовой микрополосковой антенне. На основании измерений шумовых характеристик всей структуры (см. рис. 1) можно найти зависимость измеренного коэффициента шума всего тракта, с учётом затухания, и коэффициента шума антенны, если представить её в виде четырёхполюсника, на входной порт которого поступает мощность, излучённая рупорной антенной.

С учётом приведённых соображений была поставлена задача моделирования и расчёта устройства, состоящего из СВЧ-структур, в которые включены активные элементы. Метод Олинера [4] используется для моделирования распределённых СВЧэлементов вместе с дискретными активными СВЧ-элементами на основе формул расчёта распределённых элементов, но не учитывает связь по ближнему полю между отдельными элементами структуры.

Комплексный подход реализован в широко распространённой программе Microwave Office [3], в которой моделирование выполняется в схемном и топологическом представлении (см. рис. 2). Если СВЧ-структура рассчитывается методом моментов в программе MWO EMSight [5], то S-параметры или модель активных элементов добавляются на уровне схемы, т.е. узлы активных элементов подключаются к внутренним портам электродинамической структуры. Аналогичное объединение методов расчёта СВЧ-структур с моделями активных элементов реализовано в программе HFSS Designer (первый вариант на рисунке 2).

Другой известный пакет программ -FEKO (http://www.feko.info) - предполагает включение усилителя в электродинамическую структуру (второй вариант на рисунке 2). Здесь сначала выполняется расчёт методами теории цепей, а затем – электродинамический анализ. В этом случае взаимная связь входной и выходной согласующих структур учитывается автоматически, и появляется возможность рассчитать характеристики ближнего и дальнего поля структуры, в которую включены активные элементы. Усилитель подключается к внутренним портам, созданным в разрыве входной и выходной согласующих структур (см. рис. 1).

Сравнивая подходы, представленные на рисунке 2, можно заключить, что шумовые характеристики учитываются в первом варианте, при совместном моделировании в интерфейсе программы Microwave Office. Это позволяет реализовать схему измерения коэффициента шума на проход и даёт возможность тестировать активные антенны по критерию собственных шумов.

Рис. 3. Рассчитанные и измеренные характеристики микрополосковой антенны

Рис. 4. Схема объединения восьмиполюсника (рупорной и микрополосковой антенн) EM Ant_rup и S-параметров усилителя MGA-62563 в программе Microwave Office

Рис. 5. Частотная зависимость коэффициента шума в согласованном и рассогласованном тракте

Рис. 7. Проходные частотные характеристики усиления между двумя антеннами

ДВУМЕРНОЕ МОДЕЛИРОВАНИЕ АКТИВНОЙ АНТЕННЫ И СТРУКТУРЫ ТЕСТИРОВАНИЯ

Предположим, что пассивная часть рассматриваемой антенны спроектирована электродинамическим методом и её частотные характеристики согласуются с экспериментом. На рисунке 3 приведены рассчитанная и экспериментально измеренная частотные характеристики этой микро-

Рис. 6. Пространственная схема тестирования активной патч-антенны, собранная для моделирования в EMSight

Рис. 8. Частотная зависимость коэффициента шума тракта, состоящего из рупорной и активной антенн

полосковой антенны. Рассчитанные Sпараметры антенны мы используем в полной структуре активной антенны (см. рис. 4).

Рассмотрим двумерное представление антенны в интерфейсе МWO [5] (см. рис. 1). На выходе микрополосковой антенны включен усилитель MGA-62563, S-параметры которого в диапазоне 1...2 ГГц сведены в таблицу 1. В таблице 2 перечислены шумовые па-

Таблица 1. Типовые значения S-параметров микросхемы MGA в диапазоне частот от 1 до 2 ГГц при смещении 20 мA и напряжении 3 В

Частота, ГГц	IS11I	∠ \$11	IS21I	∠ \$21	IS12I	∠ \$12	I\$22I	∠ \$22
1,0	0,317	-143,232	9,611	121,342	0,042	10,645	0,173	167,409
1,1	0,34	-147,643	9,179	116,107	0,0042	12,083	0,175	166,393
1,5	0,385	-159,01	7,684	98,886	0,045	17,798	0,153	164,02
1,6	0,392	-161,727	7,349	95,185	0,046	19,056	0,144	163,07
1,7	0,397	-164,752	7,015	91,424	0,048	20,227	0,132	162,822
1,8	0,4	-167,685	6,72	88,093	0,049	21,207	0,122	162,927
1,9	0,4	-170,686	6,446	84,931	0,051	22,085	0,113	163,177
2,0	0,4	-173,615	6,195	81,892	0,052	22,821	0,104	163,203

Таблица 2. Шумовые параметры микросхемы MGA в диапазоне частот от 1 до 2 ГГц при смещении 20 мА и напряжении 3 В

Частота, ГГц	Кш.мин	۱۲ _{опт} ۱	∠r _{onr}	<i>r_n,</i> Ом
0,5	0,79	0,08	57,8	0,12
1,0	0,65	0,07	168,2	0,07
1,5	0,76	0,12	-176,7	0,07
2,0	0,87	0,13	149,3	0,08

раметры, в которые входят частота, минимальный коэффициент шума $K_{\text{ш.мин}}$ достигаемый при коэффициенте отражения $\Gamma_{\text{опт}}$, модуль и фаза в градусах коэффициента отражения и шумовое сопротивление, рассчитанное по формуле:

$$r_n = (K_{\text{III0}} - K_{\text{III.MUH}}) \frac{\left|1 + \Gamma_{\text{opt}}\right|^2}{4\left|\Gamma_{\text{opt}}\right|^2},$$
 (3)

где *К*_{ш0} – коэффициент шума в 50-омном тракте [4, 5].

Из теории линейного шума следует, что $\Gamma_{\text{орt}}$, $K_{\text{ш.мин}}$, и r_n являются независимыми величинами, причём должно соблюдаться условие:

$$r_n \ge \frac{K_{\text{III.MUH}} - 1}{4 |\Gamma_{\text{opt}}|}.$$
 (4)

Если это неравенство не выполняется, то в программе Microwave Office [5] значение r_n будет установлено равным выражению в правой части (4).

Блок MGA SF 12 в схеме на рисунке 4это микросхема MGA-62563, выполненная по технологии E-GaAs pHEMT и предназначенная для применения на частотах от 100 МГц до 3 ГГц. Напряжение питания микросхемы MGA-62563 составляет 3 В; ток потребления обычно устанавливают равным 60 мА, чтобы обеспечить усиление 22 дБ. Параметры ИС, включенные в (3) и (4), а также К_{ш.мин} и К_{ш.о} зависят от частоты, и на каждой частоте существует оптимальный коэффициент отражения Горт, обеспечивающий К_{ш.мин}. Частотная зависимость К_{ш.мин} микросхемы MGA-62563 приведена на рисунке 5.

После создания модели в виде схемы (см. рис. 4) с блоками, рассчитанными как электродинамическими методами расчёта, так и методами теории цепей, в программе MWO выполнена оптимизация по критерию сходимости экспериментальных и рассчитанных данных с использованием двумерной модели антенной системы [5]. В процессе оптимизации были найдены оптимальные параметры дискретных элементов, а также компонентов с распределёнными параметрами (размеры двумерного представления антенн и координаты точки питания антенны).

На рисунке 6 показано двумерное представление рупорной и микрополоской антенн. Левая часть представляет собой сечение рупорной антенны, которая возбуждается пор-

Рис. 9. Диаграмма направленности вверх над антенной

Рис. 10. Диаграмма направленности вдоль антенны

том 1. Напротив рупорной антенны находится тестируемая планарная антенна. Антенна присоединена к микрополосковой линии, в разрыв которой включен четырёхполюсник с S-параметрами микросхемы MGA. Порты, к которым присоединяется усилитель, заданы в виде перемычек. Задачей анализа является расчёт коэффициента передачи между входами антенн и коэффициента шума всего тракта.

На рисунке 7 приведены рассчитанные с помощью MWO частотные характеристики коэффициента передачи MGA-62563, коэффициента связи между портом рупорной антенны и выходом микрополосковой антенны, а также общий коэффициент усиления тракта, увеличенный за счёт включения микросхемы. Усилитель компенсирует общие потери тракта, что увеличивает точность измерения коэффициента шума всего тракта. Из рисунка 8 видно, что коэффициент шума системы из двух антенн и усилителя превышает 20 дБ. Отметим, что современные приборы фирмы Agilent измеряют коэффициент шума в диапазоне от 0 до 25 дБ с точностью 2%.

Диаграммы направленности СВЧструктуры, состоящей из двух антенн, зависят от того, какая антенна излучает. Диаграмма направленности антенны в системе МWO выводится как меридиональная (см. рис. 9) и азимутальная (см. рис. 10). В структуре антенны верхняя и нижняя поверхности задаются как поверхности поглощения с импедансом 377 Ом [5].

Коэффициент шума всего тракта, включая потери между тестовой и рупорной антенной, определяется по формуле Фрииса [1]:

$$K_{\text{III,TDAKTA}} = L_{\text{TDAKTA}} (1 + L_{\text{TII}} K_{\text{III,V}}), \quad (5)$$

где $K_{\text{ш.тракта}}$ – коэффициент шума всего тракта, включая и рупорную, и тестируемую активную антенну, $L_{\text{тракта}}$ – затухание в канале распространения волн, $L_{\text{тп}}$ – тепловые потери антенны, $K_{\text{пцу}}$ – коэффициент шума усилителя.

Подставляя в формулу (5) значения L_{тракта} = 20 дБ (100 ед.), L_{тн} = 3 дБ (2 ед.) и К_{ш.у} = 3 дБ (2 ед.), получаем коэффициент шума тракта 27 дБ, который не зависит от коэффициента передачи усилителя. Известно, что при выходе из строя усилителя коэффициент шума тракта К_{ш.тракта} возрастает на значение, эквивалентное коэффициенту передачи усилителя. Таким образом, установив рупорную антенну с определённой диаграммой направленности и КНД, можно тестировать любую антенну по критерию коэффициента шума на проход, который будет равен разности измеренного значения Килтракта и калибровочного значения L_{тракта}.

Заключение

Программное обеспечение MWO AWR предоставляет большие возможности для электродинамического моделирования СВЧ-структур с внедрёнными в них активными элементами, что показано на примере активной антенны системы ГЛОНАСС.

Используя электродинамическое моделирование, можно рассчитать антенные системы с учётом связи между согласующими структурами и антеннами. В программе MWO это можно выполнить, если трёхмерную структуру привести к двумерной, что иллюстрирует пример взаимодействия рупорной антенны и активной микрополосковой антенны. Обратные связи между входным и выходным портом в этом случае учитываются автоматически. Такой подход можно считать перспективным для проектирования многотранзисторных СВЧ-усилителей, активных антенн, активных антенных решёток и структур, которые играют роль согласующих и излучающих элементов одновременно.

Литература

- Сифоров В.И. Радиоприёмники сверхвысоких частот. Военное изд. Минобороны СССР, 1955.
- 2. *Gonzalez G.* Microwave Transistor Amplifiers. Analysis and Design,1997.
- Poole C.R., Paul D.K. Optimum Noise Measure Terminations for Microwave Transistor Amplifiers. IEEE Transactions on MTT. November 1985. Vol. MTT-13. No. 11. PP. 1254–1257.
- Курушин А.А., Текшев В.Б. Шумовые свойства СВЧ-транзисторов. Электросвязь. 1982. № 2. С. 57–60.
- Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ-устройств с помощью Microwave Office. СОЛОН-Пресс, 2003.