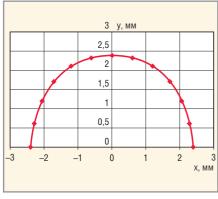
Системы светодиодного освещения в приборах технического зрения

Екатерина Газиева, Виталий Лукаш, Василий Юрченко (Томск)


В статье рассматриваются вопросы проектирования и изготовления светодиодных систем подсветки, в частности, для микроскопов, оснащаемых видеокамерами.

Введение

Системы технического зрения (СТЗ) широко применяются для оценки качества электронных устройств и систем, при контроле сборки микросхем [1] и полупроводниковых приборов, для обнаружения дефектов в кристаллах, топологии микросхем, печатных плат, а также в медицинском и аналитическом оборудовании. Для получения изображения объектов приборы оснащаются видеосистемами и системами подсветки различного спектрального состава [2, 3].

Для чёткой передачи изображения необходим источник освещения, обеспечивающий требуемый уровень освещённости и спектральный состав излучения видимого диапазона, адаптируемый к спектральной чувствительности видеокамеры. В настоящее время из всех источников освещения самым подходящим вариантом являются светодиодный [4]. Малые размеры и низкие уровни рассеиваемой мощности позволяют использовать светодиоды в качестве источников света, монтируемых в элементах освещения поля зрения СТЗ.

Светодиодные источники освещения имеют различные формы исполнения осветителей: кольцевую, квадратную, прямоугольную, цилиндри-

Профиль линзы для светодиодного модуля

ческую и др. В зависимости от формы исполнения источника освещения изготавливаются оптические системы (линзы). Например, для кольцевого источника освещения подходит параболическая линза, которая равномерно распределяет свет по требуемой поверхности.

Вторичная оптика в изделиях светодиодной светотехники [4, 5] может состоять из линз, отражателей, их комбинаций и систем множественных линз или отражателей. Светодиодная оптика, в основном, базируется на создании коллимированного излучения от светодиода со стандартной конструкцией линзы, распространяющей свет на главной поверхности линзы в заданном направлении. Линзы для светодиодов производятся из полиметилметакрилата (РММА) или поликарбоната (РС). Существуют сотни модификаций в этих материальных группах, но только небольшая часть обеспечивает высокий коэффициент пропускания в заданной спектральной области.

ПРОЕКТИРОВАНИЕ ИСТОЧНИКА ПОДСВЕТКИ

Авторами были разработаны системы малогабаритных источников подсветки на светодиодах для оптических микроскопов отечественного и импортного производства и выполнены экспериментальные исследования разработанных источников. При расчётах оптических систем использовалось программное обеспечение Zemax, Trace Pro и т.д.

Для проектирования и изготовления светодиодной системы подсветки микроскопов были выбраны светодиоды ТО-3228ВҮ-МWН2 (Taiwan Oasis Technology) и RF-WNRA30DS-FF (Refond). Данные приборы характеризуются малыми токами (20 мА) и хорошими световыми характеристиками

(до 3000 кд в угле расходимости 120°). Мощные светодиоды пригодны для общего освещения, так как имеют большие значения тока и высокие показатели световой отдачи. При выборе следует учитывать зависимость между площадью освещаемой поверхности и значением силы света системы. Если требуемое значение силы света не достигается использованием одного светодиода, можно применить системы с тремя, пятью или более светодиодами.

Для разрабатываемого светодиодного модуля (СДМ) наиболее подходящей является диаграмма направленности с углом расходимости примерно 45°. Для подсветки микроскопа была выбрана кольцевая структура линзы. Рассчитанный профиль для линзы приведён на рисунке. Для формирования линзы использован оптически прозрачный компаунд ЭК ПЭО-90 МЭ, поскольку он имеет большой коэффициент пропускания, повышенную адгезионную способность и низкую стоимость. Заливочная форма изготавливалась из силиконовой резины. Для улучшения адгезионных свойств кольцо, силиконовая форма и оптический компаунд нагревались до одной и той же температуры.

Расчёт светодиодного источника для подсветки рабочего столика микроскопа

Исходные данные: d_1 – внутренний диаметр кольца; d_2 – внешний диаметр кольца; d_3 – диаметр рабочего столика микроскопа; $E_{\rm норм}$ – нормируемая освещённость в центре рабочего столика; $h_0...h_n$ – диапазон высот (расстояний от поверхности столика до плоскости кольца).

Нормируемая освещённость задаётся, исходя из разряда зрительной работы (при этом полагаем, что фон средний и контраст объекта с фоном также средний): $E_{\rm Hopm}=4000$ лк при рассматривании предметов размером менее 0,15 мм; $E_{\rm Hopm}=3000$ лк при рассматривании предметов размером от 0,15 до 0,3 мм; $E_{\rm Hopm}=1000$ лк при рассматривании предметов размером от

Результаты измерения светотехнических характеристик СДМ

Световой поток	ф,лм	50,0
Сила света	<i>I</i> , кд	24,13
Световая отдача	η , лм/Вт	64,0

0,3 до 0,5 мм; $E_{\rm HOPM}$ = 500 лк при рассматривании предметов размером от 0,5 до 1 мм.

Расчёт профиля линзы, задающего необходимую диаграмму направленности излучения, проводился из следующих соображений. Источник света должен излучать в диапазоне углов от $(90^{\circ} - \varphi_1)$ до $(90^{\circ} + \varphi_2)$:

$$\varphi_1 = \operatorname{arctg} \frac{x_1}{b}, \ \varphi_2 = \operatorname{arctg} \frac{x_2}{b},$$

где

$$x_1 = \frac{d_1 + d_2}{4}, x_2 = \frac{d_3 - 2x_1}{2}.$$

Чтобы построить профиль линзы, разбиваем диапазон углов от 0° до 180° на зоны по 5... 10° . В каждой зоне надо построить отрезок под углом χ . В интервале углов от $(90^{\circ} - \phi_1)$ до $(90^{\circ} + \phi_2)$ луч выходит из линзы под прямым углом к поверхности: $\chi = 90^{\circ} - \phi$.

В интервале углов от $(90^{\circ} + \phi_2)$ до 180° луч должен падать на поверхность линзы под углом полного внутреннего отражения (ПВО). В этом случае вышедший луч будет скользить по поверхности; либо луч должен падать под углом, несколько большим угла ПВО, тогда световой луч будет отражаться от поверхности обратно в линзу:

$$\chi = 90^{\circ} - \alpha - \varphi,$$

где α — угол ПВО или угол, несколько превышающий угол ПВО. В интервале углов от 0 до ϕ_1 световой луч может выходить из линзы под любым углом.

Рассчитываем необходимое количество диодов:

$$E_1 = \frac{I_{\varphi} \cos \varphi_1}{I^2}$$

— освещённость, создаваемая одним диодом в центре предметного столи- ка, где I_{ϕ} = I_0 cos ϕ_1 — сила света в угле ϕ_1 ; I_0 — осевая сила света; l^2 = h^2 + x_1^2 .

Таким образом,

$$E_1 = \frac{I_0 \cos \varphi_1^2}{b^2 + x_1^2}.$$

СОВРЕМЕННАЯ ЭЛЕКТРОНИКА ♦ № 2 2011

Количество диодов, необходимое для нормального освещения, рассчитываем по формуле:

$$n = \frac{E_{\text{HOPM}}}{E_1}$$

и округляем до ближайшего целого числа.

Учитывая, что освещённость поля зрения можно регулировать, изменяя ток через диод, количество диодов выбираем для среднего значения b.

Источник подсветки для микроскопа

Таким образом, СДМ состоит из кольцевой печатной платы, вдоль которой эквидистантно расположены 12 мощных белых светодиодов фирмы Taiwan Oasis Technology, и линзы, выполненной из оптически прозрачного эпоксидного компаунда ПЭО-90 МЭ с показателем преломления 1,55 и обеспечивающей равномерное освещение всей рабочей поверхности микроскопа [6]. В таблице приведены параметры СДМ.

Также был изготовлен регулятор уровня освещённости размером 30 × × 15 × 9 мм, работающий от такого же напряжение, как и СДМ, и предназначенный для управления яркостью подсветки предметного столика микроскопа МБС-10. Органом управления является сенсорная площадка, касание и удержание которой изменяет уровень напряжения на светодиодах модуля.

Литература

- Билибин К.И., Власов А.И., Журавлева Л.В. и др. Конструкторско-технологическое проектирование электронной аппаратуры. Под ред. В.А. Шахнова. МГТУ им. Н.Э. Баумана. 2002.
- 2. Мошкин В.И., Петров А.А., Титов В.С., Якушенков Ю.Г. Техническое зрение роботов. Под ред. Ю.Г. Якушенкова. Машиностроение, 1995.
- 3. *Газиева Е.Э., Вилисов А.А., Пелявин Д.Ю., Юрченко В.И.* Адаптивная система управления освещением на основе полупроводниковых источников света. Известия вузов, Физика. 2008. № 9/3. С. 132–133.
- Газиева Е.Э., Бакин Н.Н., Юрченко В.И. Тенденции развития комплектующих изделий для светодиодных источников освещения. Сб. конф. «Свет без границ». 2009. С. 296–300.
- 5. Газиева Е.Э., Васильев А.В., Сырямкин В.И., Юрченко В.И. Системы освещения в приборах технического зрения для контроля электронных устройств и систем. Тезисы докладов 28-й НТК «Электронные и электромеханические системы и устройства». Томск, 2010. С. 339–340.
- 6. Газиева Е.Э., Тябаева Л.А., Сырямкин В.И., Юрченко В.И. Материалы и технологические процессы изготовления элементов вторичной оптики в изделиях светодиодной светотехники. Материалы 12-й НПК «Химия 21 век: новые технологии, новые продукты». Кемерово, 2009. С. 235–236.