# Обеспечение радиационной стойкости МОП-транзисторов: влияние одиночных эффектов

#### Алексей Соколов (Москва)

В статье приведён обзор основных одиночных радиационных эффектов, влияющих на работу силовых радиационно-стойких МОП-транзисторов, а также последние данные испытаний на стойкость к одиночным сбоям.

#### Введение

Силовые полевые МОП-транзисторы широко используются в бортовых системах космических аппаратов в цепях синхронного выпрямления, в качестве основных элементов преобразователей в системах электропитания и силовых ключей.

Задача разработки и серийного производства отечественной радиационно-стойкой компонентной базы в целях импортозамещения чрезвычайно актуальна в настоящее время. Так, в соответствии с постановлением Правительства Российской Федерации от 26 ноября 2007 г. №809 о федеральной целевой программе «Развитие электронной компонентной базы и радиоэлектроники на 2008-2015 гг.», разработка и серийное производство радиационно-стойких отечественных силовых транзисторов является одним из приоритетных направлений развития российской электронной отрасли [1].

В настоящее время в РФ производятся силовые транзисторы, которые не отвечают современным требованиям, предъявляемым производителями космической техники к компонентной базе в том, что касается электрических характеристик и стойкости к ионизирующим излучениям (см. табл. 1). Поэтому ЗАО «Промышленные технологии» ведёт разработку радиационностойких силовых МОП-транзисторов п- и р-типов с блокирующими напряжениями 200, 100 и 60 В.

В 1970-х гг. началось производство силовых планарных МОП-транзисторов по технологии двойной диффузии. Силовые МОП-транзисторы имеют вертикальную структуру – носители заряда движутся от истока, расположенного на поверхности кристалла, вертикально к стоку на другой стороне кристалла. В структуре прибора также имеется эпитаксиальный слой кремния, толщина и уровень легирования которого определяется значением блокиру-

ющего напряжения, на которое рассчитан прибор.

В 1990-х гт. появились силовые МОПтранзисторы, произведённые по технологии «тренч», то есть канавок, полученных плазмохимическим травлением эпитаксиальных пластин кремния. По сравнению с планарной, эта технология обладает следующими преимуществами:

- радикальным снижением сопротивления открытого канала [2];
- низким значением произведения заряда затвора на сопротивление открытого канала [3];
- улучшенными динамическими характеристиками вследствие уменьшения паразитных ёмкостей [4].

На рисунке 1 показан кристалл силового транзистора, разрабатываемого ЗАО «Промышленные технологии».

Преимущества электрических характеристик МОП-транзисторов с «тренч»-затворами, по сравнению с обычными планарными транзисторами, стимулировали выпуск радиационно-стойких приборов, специально созданных для космических применений. Радиационная стойкость таких МОП-транзисторов требует дополнительных испытаний, поскольку наличие затвора в канавке и более сложная картина

Таблица 1. Сравнительная характеристика отечественных и произведённых в СНГ силовых МОП-транзисторов с зарубежными аналогами

|                                                   | Буквенное<br>обозначение | Производитель, страна производства, наименование |                                                                                                            |                                                                                       |                                                                              |                                                                                        |  |
|---------------------------------------------------|--------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Наименование параметра,<br>единицы измерения      |                          | ОАО «Ангстрем»,<br>РФ, 2П170Б                    | ОАО «Интеграл», Республика<br>Беларусь, 2П7145А/ИМ                                                         | Фрязинский завод<br>мощных транзисторов<br>ОАО «ЦНИИ «Дельфин»,<br>РФ, 2П716ОИ        | International Rectifier,<br>США, IRHNA67260                                  | Транзистор,<br>разрабатываемый<br>ЗАО «Промышленные<br>технологии», РФ                 |  |
| Максимально допустимое напряжение сток-исток, В   | U <sub>си</sub> , макс   | 200                                              | 200                                                                                                        | 200                                                                                   | 200                                                                          | 200                                                                                    |  |
| Постоянный ток стока, А                           | I <sub>с</sub> , макс    | 45¹                                              | 30 <sup>3</sup>                                                                                            | 35⁵                                                                                   | 56 <sup>7</sup>                                                              | 56 <sup>9</sup>                                                                        |  |
| Сопротивление сток-исток в открытом состоянии, Ом | R <sub>си</sub> , отк    | 0,035 <sup>2</sup>                               | 0,085 <sup>4</sup>                                                                                         | 0,055 <sup>6</sup>                                                                    | 0,0288                                                                       | 0,02010                                                                                |  |
| Пороговое напряжение, В                           | U <sub>зи</sub> , пор    | 24                                               | 24                                                                                                         | -                                                                                     | 24                                                                           | 24                                                                                     |  |
| Максимально допустимое напряжение затвор-исток, В | U <sub>зи</sub> , макс   | ±20                                              | ±20                                                                                                        | ±20                                                                                   | ±20                                                                          | ±20                                                                                    |  |
| Ток утечки затвора, нА                            | I <sub>3</sub> ,yT       | ±100                                             | ±100                                                                                                       | ±100                                                                                  | ±100                                                                         | ±100                                                                                   |  |
| Показатели радиационной стойкости                 |                          | -                                                | 7И1<br>7С1<br>7С4 по группе исполнения 1Ус<br>7И7 по группе исполнения 2Ус<br>7И6 по группе исполнения 4Ус | 7И1<br>7И6<br>7И7 по группе<br>исполнения 3У с 7С1<br>7С4 по группе<br>исполнения 1Ус | Стойкость по<br>накопленной дозе:<br>300 крад<br>ЛПЭ к ТЗЧ:<br>60 МэВ·см²/мг | Стойкость по накопленной<br>дозе: 300 крад<br>ЛПЭ к ТЗЧ:<br>80 МэВ·см <sup>2</sup> /мг |  |

Примечания к Таблице 1. Условия измерения параметров

 $^{1}$  Tkopnyca = 25°C  $^{3}$  U $_{_{3M}}$  = 10 B, U $_{_{CM}}$  = 4 B, Tkopnyca = 25°C

<sup>4</sup> U<sub>24</sub> = 10 B, I<sub>2</sub> = 18 A

 $^{5}$  U<sub>зи</sub> = 10 B, U<sub>си</sub> = 4 B, Ткорпуса = 25°C

 $^{6}$  U<sub>3M</sub> = 10 B, I<sub>c</sub> = 12 A

<sup>7</sup> U<sub>зм</sub> = 12 B, Ткорпуса = 25°C <sup>8</sup> U<sub>зм</sub> = 12 B, I<sub>c</sub> = 40 A <sup>9</sup> U<sub>зм</sub> = 12 В, Ткорпуса = 25°С

 $^{10}$  U $_{_{3M}}$  = 12 B, I $_{_{C}}$  = 40 A

 $^{2}$  U<sub>3M</sub> = 10 B, I<sub>c</sub> = 20 A

## СДЕЛАНО В РОССИИ!



## Разработка и производство

электрифицированных систем и их компонентов:

ВЧ, СВЧ кабельные сборки

Провода

Электрические соединители

Кожухи, аксессуары

Элеме<mark>нты крепления</mark> и мон<mark>тажа жг</mark>утов

Экранирующие плетёнки

Линии передачи информации мультиплексного канала информационного обмена (ЛПИ МКИО)

Низкочастотные жгуты

волс

143441, Московская область Красногорский район, 69 км МКАД Бизнес-Парк «Гринвуд», стр. 17

тел.: (495) 721-85-00; факс: (495) 721-86-00 E-mail: info@ptkgroup.ru www.ptkgroup.ru

Реклама

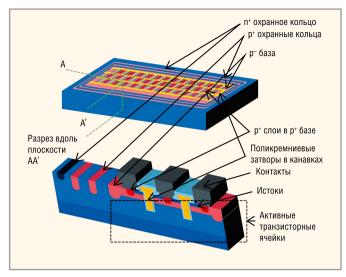



Рис. 1. Кристалл силового 200-вольтного п-канального МОП-транзистора

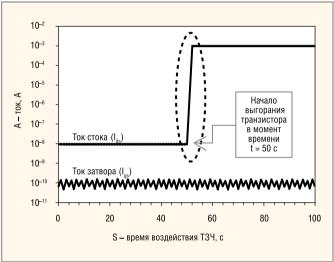
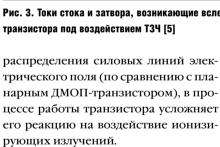




Рис. 3. Токи стока и затвора, возникающие вследствие выгорания



Электрические характеристики МОПтранзисторов в значительной степени подвержены деградации из-за накопленной дозы радиации и одиночных радиационных эффектов (одиночного эффекта выгорания и одиночного эффекта пробоя подзатворного диэлектрика). Рассмотрим более подробно влияние одиночных эффектов на характеристики мощных МОП-транзисторов, в частности, с «тренч»-затворами.

#### Одиночный эффект **ВЫГОРАНИЯ**

Одиночные радиационные эффекты возникают из-за взаимодействия высокоэнергетических тяжёлых ионов и протонов (тяжёлых заряжен-

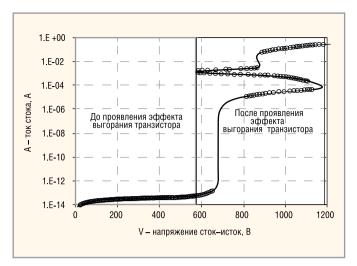



Рис. 2. Квазистационарные вольтамперные характеристики МОП-транзистора в состоянии лавинного пробоя

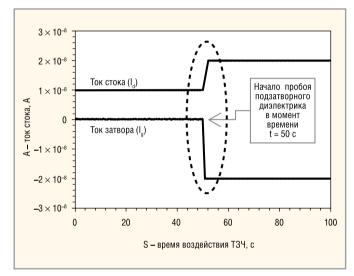



Рис. 4. Токи стока и затвора, возникающие вследствие пробоя подзатворного дизлектрика транзистора под воздействием ТЗЧ

ных частиц, ТЗЧ) с полупроводниковым материалом транзистора. Частицы ионизируют атомы кремния на своём пути следования в толще материала. Кроме того, вторичные частицы, возникающие из-за упругих и неупругих столкновений ядер атомов материала, также приводят к его ионизации.

На рисунке 2 представлены вольтамперные характеристики МОПтранзистора на различных стадиях электрического пробоя [5]. При увеличении напряжения сток-исток до определённого значения, МОП-транзистор входит в режим нормального лавинного пробоя. С ростом напряжения на истоке данный процесс продолжается до тех пор, пока падение напряжения внутри р-области не активирует паразитный биполярный транзистор. После этого МОП-транзистор уже не может выдерживать высокие значения напряжения сток-исток. При этом ток стока продолжает увеличиваться, а напряжение на стоке - падать. Из-за обратной связи наступает вторичный пробой, который приводит к короткому замыканию между стоком и истоком, что разрушает прибор.

На рисунке 3 представлены графики изменения токов утечки стока и затвора до и после облучения ТЗЧ, которые вызывают выгорание транзистора. В момент времени t = 0 ток истока равен  $10^{-8}$  A, а ток затвора –  $10^{-10}$  A. Перед переходом транзистора в состояние выгорания вышеуказанные токи утечки определяются параметрами прибора, а также измерительной установкой. В момент времени t = 50 нс наблюдается значительное увеличение тока стока. При этом ток затвора остаётся неизменным.

#### Одиночный эффект пробоя подзатворного диэлектрика

При прохождении ТЗЧ в эпитаксиальном слое силового транзистора

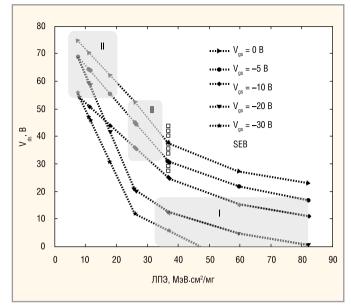
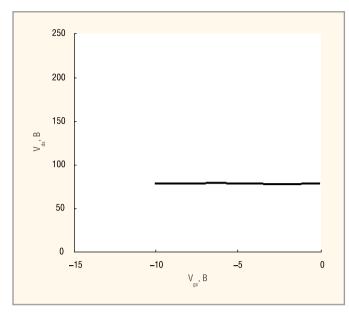




Рис. 5. Пороговые напряжения, при которых начинается выгорание мощного транзистора и возникает пробой подзатворного диэлектрика:

 $V_{ds}$  – напряжение сток-исток;  $V_{ds}$  – напряжение затвор-исток



**Рис. 6. Результаты испытаний на одиночные радиационные эффекты для SUM45N25-58 [7]:**  $V_{ds}$  — напряжение сток—исток;  $V_{gs}$  — напряжение затвор—исток

генерируются электронно-дырочные пары. В вертикальном электрическом поле происходит разделение заряда: дырки дрейфуют в сторону интерфейса  $\mathrm{Si/SiO}_2$ , а электроны – в сторону стока. Кроме того, электроны и дырки радиально диффундируют из ионизационного следа.

На границе окисел-полупроводник накапливается избыточная концентрация дырок. Это связано с тем, что дырки дрейфуют в горизонтальном электрическом поле медленнее, чем электроны - в вертикальном. Аккумуляция дырок на границе Si/SiO, приводит к появлению дополнительного заряда, а значит дополнительного электрического поля, которое запускает пробой подзатворного окисла. На рисунке 4 представлены электрические характеристики транзистора (ток стока и ток затвора) до и после пробоя подзатворного диэлектрика [5]. В момент времени t = 0 нс ток стока равен  $10^{-8}$  A, а ток затвора –  $10^{-10}$  A. В момент времени t = 50 нс ток затвора значительно увеличивается. Также ведёт себя и ток стока.

#### Условия проявления одиночного эффекта пробоя подзатворного диэлектрика и эффекта выгорания

На рисунке 5 представлены графики пороговых напряжений, при которых наступает пробой подзатворного диэлектрика при больших значениях напряжения на затворе. При этом напряжение сток-исток может быть малым (см. область I на рис. 5) [6].

В области малых значений напряжения сток-исток не проявляет себя эффект выгорания, так как пиковая напряжённость электрических полей в эпитаксиальном слое недостаточна для поддержания лавинного пробоя. При малых напряжениях на затворе транзистора и достаточно больших значениях напряжения сток-исток возможно совместное проявление выгорания транзистора и пробоя диэлектрика. В области III напряжение на затворе слишком мало, чтобы инициировать пробой диэлектрика первым (малые значения линейных потерь энергии -ЛПЭ), однако вероятность выгорания транзистора высока из-за высокого напряжения сток-исток. Следовательно, доминирующим механизмом катастрофического отказа является одиночный эффект выгорания транзистора. В области II возможно либо выгорание транзистора, либо пробой диэлектрика под воздействием ионизирующих излучений (для одинаковых значений напряжений  $V_{\rm es}$ ,  $V_{\rm ds}$  и ЛПЭ).

#### Результаты испытаний транзисторов, изготовленных по технологии «тренч», на одиночные эффекты

В настоящее время опубликовано незначительное число результатов испытаний, описывающих влияние одиночных радиационных эффектов на электрические характеристики «тренч»-МОП-транзисторов. Далее представлены результаты испытаний воздействия ТЗЧ на МОП-транзисторы следующих производителей: International Rectifier (США) – IRHLF87Y20SCS, Vishay – SUM45N25-58, Vishay – Si7431DP. Электрические характеристики транзисторов сведены в таблицу 2.

Таблица 2. Электрические характеристики силовых МОП-транзисторов с изоляцией канавками

| Наименование параметра, единицы измерения         | Буквенное обозначение  | International Rectifier IRHLF87Y20SCS                                                  | Vishay<br>SUM45N25-58  | Vishay<br>Si7431DP     |
|---------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|------------------------|------------------------|
| Максимально допустимое напряжение сток-исток, В   | U <sub>си</sub> , макс | 20                                                                                     | 250                    | -200                   |
| Постоянный ток стока, А                           | I <sub>c</sub> , makc  | 12                                                                                     | 45                     | -3,8                   |
| Сопротивление сток-исток в открытом состоянии, Ом | R <sub>си</sub> , отк  | 0,032                                                                                  | 0,058                  | 0,174                  |
| Показатели радиационной стойкости                 |                        | Стойкость по накопленной<br>дозе: 100 крад<br>ЛПЭ к ТЗЧ:<br>60 МэВ-см <sup>2</sup> /мг | Не радиационно-стойкий | Не радиационно-стойкий |

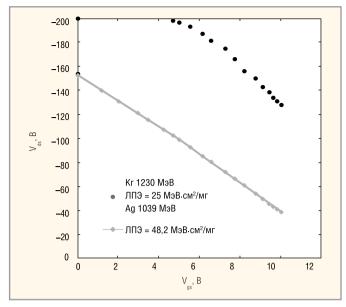



Рис. 7. Результаты испытаний на одиночные радиационные эффекты для Si7431DP [8]:  $V_{ds}$  — напряжение сток—исток;  $V_{gs}$  — напряжение затвор—исток

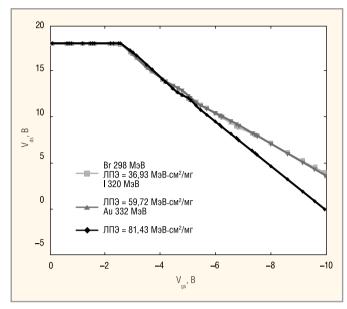



Рис. 8. Результаты испытаний на одиночные радиационные эффекты для IRHLF87Y20SCS [9]:  $V_{ds}$  — напряжение сток—исток;  $V_{gs}$  — напряжение затвор—исток

Из анализа рисунков 6-8 следует, что только один из рассматриваемых приборов (International Rectifier) не изменяет своего значения пробивного напряжения (при приложенных напряжениях затвор-исток вплоть до ~2,5 В) под воздействием ТЗЧ (в данном случае ионов брома, йода и золота). С ростом значений напряжения затвор-исток происходит быстрая деградация прибора. Транзистор SUM45N25-58 производства Vishay обеспечивает радиационную стойкость только для половины заявленного блокирующего напряжения (см. рис. 6). Характеристики р-канального транзистора Si7431DP (Vishay) стабильны при облучении ионами криптона до напряжений затвор-исток 5 В (см. рис. 7).

#### Заключение

Использование технологии изоляции канавками в производстве радиационно-стойких силовых полу-

проводниковых приборов – новое направление развития электроники для космических применений. Сложная физика одиночных радиационных эффектов и другая конструкция полупроводниковых приборов требуют модификации существующих конструктивно-технологических подходов обеспечения радиационной стойкости вновь разрабатываемых приборов.

#### Литература

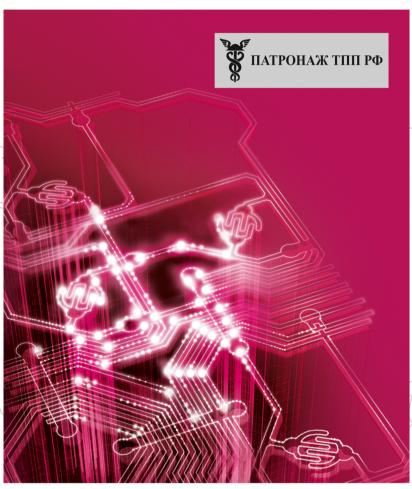
- 1. Постановление Правительства Российской Федерации от 26 ноября 2007 г. №809 о федеральной целевой программе «Развитие электронной компонентной базы и радиоэлектроники на 2008–2015 гг.». www.consultant.ru/document/cons\_doc\_LAW 158088.
- 2. *Jayant Baliga B*. Trends in Power Semiconductor Devices. IEEE Transactions on Electron Devices. 1996. V. 43. № 10. P. 1717–1729.
- Ma L., Amali A. et al. New Trench MOSFET Technology for DC/DC Converter Appli-

- cations. Power Semiconductor Devices and ICs. Proceedings. 2003. P. 354–357.
- Lorenz L. Key Power Semiconductor Devices and Development Trends. International Workshop on Physics of Semiconductor Devices. 2007. P. 743–750.
- 5. *Titus J. L.* An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs. IEEE Transactions on nuclear science. 2013. V. 60. № 3. P. 1912–1920.
- 6. *Allenspach M.* SEGR and SEB in N-Channel Power MOSFETS. IEEE Transactions on Nuclear Science. 1996. V. 43. № 6. P. 2927–2931.
- Lauenstein J-M. et al. Recent Radiation Test Results for Power MOSFETs. Proceeding of 2013 Nuclear and Space Radiation Effects Conference. 2013.
- Lauenstein J-M. et al. SEE Test Report,
  V. 2. Single Event Effects Testing of the
  Vishay Si7431DP P-Type Power MOSFET.
  2011.
- www.irf.com/product-info/datasheets/data/ irhlf87y20.pdf.

### Новости мира News of the World Новости мира

## Ivideon привлёк \$4 млн от венчурного фонда Impulse VC

2 июня 2015 г. на «Startup Village» между венчурным фондом Impulse VC и сервисом облачного видеонаблюдения Ivideon (резидентом «Сколково») была заключена сделка об инвестировании.


Ivideon – это сервис облачного видеонаблюдения через Интернет, который позволяет наблюдать за тем, что дорого, где бы вы ни были. Ivideon обеспечивает более миллиона пользователей качественным сервисом каждый день.

К середине 2015 года Ivideon превратился в глобальный и развитый IT-бизнес, имеющий большой объём продаж не только в России, но и в США и Европе. Поэтому, как и любой быстрорастущей

компании, Ivideon потребовались инвестиции для ускорения роста и развития. Верным решением для достижения этой цели было привлечение средств от инвестиционного фонда. Инвестиции пойдут на международную экспансию сервиса Ivideon в Европу, а также Северную и Южную Америку.

Ivideon.com







- Электронные компоненты
- Комплектующие
- Печатные платы
- Светотехника
- Материалы
- Конструктивы

- Технологии
- Промышленное оборудование и инструменты
- Контрольно-измерительные приборы и лабораторное оборудование

Организатор выставки:



www.farexpo.ru/radel тел.: +7 (812) 777-04-07 radel2@farexpo.ru

Место проведения: Санкт-Петербург, СКК, пр. Ю. Гагарина, 8, м. «Парк Победы»

# 21-23 октября 2015

Санкт-Петербург, СКК