Схемы, методики и сценарии тестирования SPICE-совместимых макромоделей операционных усилителей

(часть 2)

Сергей Лозицкий (г. Брянск)

Во второй части статьи продолжено рассмотрение особенностей и проблем макромоделей ОУ, даны методики их тестирования и описаны способы устранения ошибок при моделировании прикладных схем. Статья ориентирована на специалистов, занимающихся практической разработкой автоматики, электроники, измерительной техники.

Проблемы «далёкой земли» и смежные вопросы

Известно [1], что если в схеме замещения ОУ имеются компоненты, соединённые с глобальной «землёй» анализируемой схемы, то результаты моделирования «плавающих» схем, в которых не заземлена общая точка источников питания ОУ, оказываются некорректными. ММ ОУ не отягощена проблемами «далёкой земли»

Рис. 8. Схема тестирования ММ ОУ на предмет наличия у неё проблем «далёкой земли»

Рис. 9. Результат тестирования ММ, схема которой имеет электрическую связь с «землёй» [1], если в схеме тестирования (рис. 8) выполняются следующие условия:

- через источник V_{float}, соединяющий общую точку источников питания VS1, VS2 с глобальной «землёй» схемы, не протекает постоянный ток;
- в режиме анализа АС Sweep сопротивление Z_{GROUND} нагрузки источника Vfloat частотного сигнала стремится к бесконечности.

Из результатов анализа узловых напряжений и токов ветвей схемы рис. 8 на постоянном токе следует, что:

 через источник V_{float}, соединяющий повторитель напряжения на ОУ DA1 с глобальной «землёй» схемы, протекает весь ток нагрузки ОУ:

$$I_{\text{OUT DA1}} = I_{\text{RL}} = I_{\text{Vfloat}} = 3 \text{ MA};$$

 токи источников питания равны и существенно меньше тока нагрузки ОУ:

$$I_{\rm VS1} = -I_{\rm VS2} = 0,56 \text{ mA} \ll I_{\rm RL} = 3 \text{ mA}$$

ЛАЧХ входного сопротивления:

$$Z_{\text{GROUND}}(S) = \frac{V_{\text{Vfloat}}(S)}{I_{\text{Vfloat}}(S)}$$

схемы тестирования со стороны источника V_{float} изображена на рис. 9.

В диапазоне частот от 1 Гц до 1 МГц сопротивление утечки «плавающего» повторителя напряжения на землю уменьшается со скоростью 20 дБ на декаду частоты, а при дальнейшем возрастании частоты устанавливается на уровне, равном сопротивлению резистора нагрузки RL = 2 кОм.

Результаты анализа свидетельствуют о том, что MM OPA130/BB не отвечает ни одному из сформулированных выше условий, или, говоря другими словами, эта MM не может использоваться в «плавающих» схемах, у которых общая точка источников питания не соединена с глобальной «землёй» анализируемой схемы. Полученный результат вполне закономерен – MM OPA130/BB является классической MM Бойля [1].

Анализ классической MPZ MM [1] ОРА27М/ВВ даёт следующие результаты:

- через источник V_{float} протекает чрезвычайно малый ток $I_{Vfloat} = 5,3 \times 10^{-15} \text{ A} = 5,3 \text{ фA};$
- через нагрузочный резистор RL протекает ток $I_{RL} = I_{OUT DA1} = 3$ мА;
- через источники питания протекают токи $I_{\rm VS1}$ = 7,7 мА, $I_{\rm VS2}$ = 4,7 мА.

ЛАЧХ сопротивления $Z_{\text{GROUND}}(S)$ изображена на рис. 10.

В схеме классической MPZ MM отсутствуют компоненты, соединённые с глобальной «землёй» (узел с именем 0) анализируемой схемы, и, следовательно, для неё выполняются следующие условия:

$$Z_{\text{GROUND}}(S) \equiv \infty,$$

$$I_{\text{Vfloat}}(S) \equiv 0.$$

Размытость кривой графика ЛАЧХ сопротивления $Z_{GROUND}(S)$ на рис. 10 объясняется тем, что ЭВМ не может корректно оперировать с бесконечно большими и исчезающе малыми величинами из-за конечной точности (разрядности) представления чисел с плавающей запятой. Зашумлённость кривой графика ЛАЧХ сопротивления $Z_{GROUND}(S)$ является верным признаком того, что тестируемая ММ ОУ не имеет электрических связей с

глобальной «землёй» схемы. Следует особо подчеркнуть, что в тех ситуациях, когда процесс моделирования сопровождается «цифровым шумом ЭВМ», результаты анализа существенно зависят от величины параметра (опции) моделирования GMIN - минимальной проводимости ветви цепи [2]. Проводимости ветвей схемы, меньшие величины GMIN, принимаются равными нулю (обрыв ветви). По умолчанию *GMIN* = 10⁻¹² См. Однако практика показала, что при тестировании в схеме рис. 8 ММ ОУ с биполярными (BJT) и полевыми (JFET) транзисторами на входе величину опции GMIN целесообразно задавать равной 10⁻¹⁴...10⁻¹³ См. Приведённые выше результаты анализа получены при задании GMIN = 10⁻¹⁴ См. Для СМОЅ ОУ трудно дать однозначные рекомендации по заданию величины опции GMIN. В комментариях к MM CMOS OУ (LMCxxx, LPCxxx) фирмы National Semiconductor для корректного моделирования входных токов ОУ рекомендуется задавать GMIN = = 10⁻¹⁶ См. В то же время в комментариях к MM CMOS ОУ ОРАЗЗб (фирма Texas Instruments) указывается, что если возникают проблемы сходимости, то необходимо задать величины опций *GMIN* = 10⁻¹¹ См и *ITL2* = 40. Однако и в этом случае в схеме рис. 8 возникает проблема сходимости при расчёте режима на постоянном токе. Эту проблему удаётся решить заданием опции $ITL2 \ge 100$. С ММ СМОЅ ОУ (AD8515, AD8545, AD860x и др.) фирмы Analog Devices не возникает проблем сходимости даже в том случае, когда все опции моделирования имеют значения по умолчанию. Совет: внимательно читайте «шапки» библиотек и комментарии к описаниям отдельных ММ.

Важное достоинство рассмотренной методики заключается в том, что она по характеру кривой ЛАЧХ $Z_{GROUND}(S)$ позволяет выявить не совсем корректные модификации МРZ ММ, которые имеют емкостную связь с глобальной «землёй» схемы. На рис. 11 изображены результаты тестирования в расширенном частотном диапазоне МРZ MM AD826/AD.

Сопротивление утечки MM на землю в 12-декадном диапазоне частоты убывает со скоростью 20 дБ/декада. Это свидетельствует о том, что сопротивление $Z_{\text{GROUND}}(S)$ связи схемы MM ОУ с «землёй» имеет чисто

Рис. 10. Результат тестирования ММ, схема которой не имеет электрических связей с землёй

Рис. 12. Схема тестирования, позволяющая установить факт реверса фазы выходного напряжения ММ ОУ

емкостной характер сопротивления. Объясняется это просто – AD826/AD относится к группе модифицированных MPZ MM (в которою также входят MM AD828/AD, LF412/NS, LM616x и др.), в которых синфазная составляющая паразитной входной ёмкости ОУ моделируется путём подключения конденсаторов между входами ОУ и глобальной «землёй» схемы (см. дополнительные материалы к [1]). Скопируйте описание MM AD826/AD и внесите в него следующие коррективы:

.SUBCKT AD826/My	2 1 99 50	
46		
*		
* INPUT STAGE AND	O POLE AT 160MHZ	
*		
•		
CD 1	2	
1.5E-12		
*CC1 1	0	
2.4E-12; My Rema:	rk.	
*CC2 2	0	
2.4E-12; My Rema:	rk.	
Ccm1M 1 99	1.2E-12;	
My Addition.		
Ccm2M 1 50	1.2E-12;	
My Addition.		
Ccm1P 2 99	1.2E-12;	
My Addition.		

Рис. 11. Результат тестирования ММ, схема которой имеет ёмкостную связь с землёй

Рис. 13. Результаты анализа в режиме Transient MM, реверсирующей фазу выходного напряжения

Ccm2P	2	50	1.2E-12;
My Addi	tion.		
		···· • •	
.ENDS A	D826/My		

Если вы осуществите тестирование доработанной MM AD826/Му, то убедитесь в том, что проблемы «далёкой земли» у неё отсутствуют.

РЕВЕРС ФАЗЫ ВЫХОДНОГО Напряжения

Определить тот факт, что ММ реверсирует фазу выходного напряжения при больших уровнях синфазного напряжения на входах ОУ [1], позволяет схема (рис. 12), в которой тестируемый ОУ включен по схеме повторителя напряжения.

Результаты анализа MM LF355/NS (библиотека nat_semi.lib) в режиме Transient изображены на рис. 13, а результаты двухвариантного анализа в режиме DC Sweep – на рис. 14.

Полученные результаты позволяют сделать следующие выводы:

- MM LF355/NS инвертирует фазу выходного сигнала при большом уровне отрицательного синфазного напряжения;
- ограничение отрицательной полуволны выходного напряжения повторителя сопровождается значи-

Рис. 14. Результаты анализа в режиме DC Sweep MM, реверсирующей фазу выходного напряжения

Рис. 15. Результаты анализа в режиме DC Sweep MM, не реверсирующей фазу выходного напряжения

Рис. 16. Схема тестирования входных статических параметров ММ ОУ

тельным ростом тока неинвертирующего входа ММ ОУ;

 уровень входного сигнала, при котором происходит инверсия фазы выходного напряжения повторителя, зависит от сопротивления *R_i* (варьируемый параметр) источника входного сигнала (см. рис. 14).

В библиотеках lin_tech.lib, LTC.lib имеется целый ряд MM (LT1013, LT1022, LT1055, LT1113, LT1792 и др.), которые моделируют защитные цепи, исключающие реверс фазы выходного напряжения ОУ. На рис. 15 изображены результаты тестирования в режиме DC Sweep MM LT1113, которая не реверсирует фазу выходного напряжения.

Следует особо отметить, что часто компоненты ММ, исключающие реверс фазы выходного напряжения ОУ, являются опционными – они «выключены» из описания MM знаками комментария (*). Так, например, у MM LT1055 секция CM CLAMP, которая описывает компоненты, исключающие реверс фазы, выглядит следующим образом:

.SUE	CKT	LT1	05	5			3	2	7	4	6
			••								
** 0	M C	LAMP									
* DC	M1	107	10	3	DM	4					
* DC	M2	105	10	7	DM	4					
* vo	MC	105	4	4.	0E	+0	0				
* EC	MP	106	4	10	3	4	1				
* RC	MP	107	10	6	1E	+0	4				
* DC	:м3	109	10	2	DM	4					
* DC	:м4	105	10	9	DM	4					
* EC	MN	108	4	10	2	4	1				
* RC	MN	109	10	8	1E	+0	4				
** E	IND	см с	LA	мр							

.ENDS

В порядке освоения рассмотренной методики тестирования сравните результаты анализа исходной MM LT1055 и этой же MM, в описании которой активизирована секция CM CLAMP.

Зависимости входных статических параметров MM от уровня синфазного напряжения и температуры

На рис. 16 изображена схема, которая позволяет осуществить тестирование всех основных статических параметров ММ ОУ.

Тестируемая MM OУ совместно с идеальным ограничителем напряжения LIMIT1 и резисторами R1 – R4 образует схему дифференциального усилителя. Использование в схеме тестирования аналогового функционального блока LIMIT1 решает следующие задачи:

- исключает влияние на результаты тестирования входных статических параметров ММ ОУ её выходного сопротивления;
- позволяет использовать резисторы R1 – R4 с чрезвычайно малыми сопротивлениями (1 Ом);
- обеспечивает независимость результатов анализа в режиме DC Sweep от выбора стартовой величины (Start Value) свипируемого параметра V_{CM}.

Первоначально в схеме на рис. 16 вместо ограничителя напряжения LIMIT1 автор использовал идеальный буферный усилитель с единичным коэффициентом передачи. Однако выяснилось, что в этом случае при свипировании параметра V_{CM} в диапазоне, превышающем размах питающих напряжений V_s, результат анализа многих ММ ОУ с простым входным дифференциальным каскадом зависит от выбора стартовой величины (Start Value) свипируемого параметра V_{СМ} (от направления «развёртки» параметра V_{CM}). Объясняется указанная зависимость тем, что при реверсе фазы выходного напряжения ММ ОУ обратная связь, осуществляемая через резисторы R1, R3, становится положительной и схема тестирования при некоторых величинах входного сигнала по существу превращается в тригтер, пороги переключения которого зависят от направления измене-

Таблица 2. Перечень тестируемых входных статических параметров ММ ОУ

Свипируемый параметр	Трасса	Физический смысл графика
V _{CM}	$V(V_{\rm os})$	Зависимость входного напряжения $V_{ m OS}$ смещения от величины синфазного напряжения $V_{ m CM}$
	$-20\log 10(D(V(V_{OS})))$	Зависимость коэффициента подавления синфазного сигнала, дБ, на постоянном токе от величины синфазного напряжения V _{CM}
	/(V _m)	Зависимость тока $I_{\sf BI}$ инвертирующего входа от величины синфазного напряжения $V_{\sf CM}$
	/(V _p)	Зависимость тока $I_{\sf BN}$ неинвертирующего входа от величины синфазного напряжения $V_{\sf CM}$
	$0.5(I(V_{\rm p})+I(V_{\rm m}))$	Зависимость среднего входного тока $I_{ m B}$ от величины синфазного напряжения $V_{ m CM}$
	$I(V_{\rm p})-I(V_{\rm m})$	Зависимость разности входных токов $I_{ m OS}$ от величины синфазного напряжения $V_{ m CM}$
TEMP	V(V _{os})	Зависимость входного напряжения $V_{\sf OS}$ смещения от температуры
	/(V _m)	Зависимость тока I _{BI} инвертирующего входа от температуры
	/(V _p)	Зависимость тока / _{BN} неинвертирующего входа от температуры
	$0.5(I(V_{\rm p})+I(V_{\rm m}))$	Зависимость среднего входного тока I _В от температуры
	$I(V_{\rm p})-I(V_{\rm m})$	Зависимость разности входных токов I _{OS} от температуры
	$(D(V(V_{OS})))$	Зависимость температурного коэффициента TCV _{OS} , B/°C, напряжения смещения от температуры
	$D(0,5(l(V_{\rm p})+l(V_{\rm m})))$	Зависимость температурного коэффициента TCI _B , А/°С, входного тока от температуры
	$D(I(V_{\rm p})-I(V_{\rm m}))$	Зависимость температурного коэффициента TCI _{OS} , А/°С, разности входных токов от температуры

ния параметра $V_{\rm CM}$. При использовании блока LIMIT1 с малыми величинами верхнего и нижнего уровней ограничения напряжения, которые задаются атрибутами HI, LO, результаты анализа не зависят от выбора стартовой величины свипируемого параметра $V_{\rm CM}$. Величины атрибутов HI, LO желательно задавать малыми, но такими,

чтобы гарантированно выполнялись следующие условия:

$$HI > 2V_{OS},$$
$$LO < -2V_{OS},$$

где V_{OS} – максимальная величина напряжения смещения тестируемой ММ ОУ.

Фиктивные источники V_m , V_p нулевого напряжения включены в схему только для того, чтобы при выводе графиков ссылаться на их токи $I(V_m)$ и $I(V_p)$, которые равны входным токам ММ ОУ – соответственно I_{BI} и I_{BN} . Несложный анализ показывает, что если ОУ работает в линейном режиме, то напряжение узла OUT схемы

Организатор:

инконэкс

Тел.: +7(495) 739 55 09 Факс: +7(495) 641 22 38 e-mail: electronica@list.ru

61

Рис. 17. Определение допустимого диапазона синфазного входного напряжения MM CLC420/CL

Рис. 20. Зависимости $V_{\rm OS}, I_{\rm BI}, I_{\rm BN}$ от температуры (MM THS4011)

определяется следующим выражением:

$$V(\text{OUT}) = \left(V_{\text{OS}} + I_{\text{OS}}\left(R1 \| R3\right) + \frac{V_{\text{CM}}}{\text{CMRR}}\right) \left(1 + \frac{R3}{R1}\right)$$

Если учесть, что R1 = R3 и $I_{OS}(R1|R3)$ – пренебрежимо малая величина (поскольку сопротивления резисторов R1 и R3 равны 1 Ом), то это выражение можно существенно упростить:

$$V(\text{OUT}) = 2\left(V_{\text{OS}} + \frac{V_{\text{CM}}}{\text{CMRR}}\right).$$
(1)

Коэффициент передачи делителя, реализованного на резисторах R5, R6, равен 0,5, и, следовательно, напряжение узла $V_{\rm os}$ схемы рассчитывается по формуле:

$$V(Vos) = V_{OS} + \frac{V_{CM}}{CMRR}.$$
 (2)

Дифференцирование (2) по *V*_{CM} даёт следующий результат:

$$\frac{dV(V_{\rm OS})}{dV_{\rm CM}} = \frac{1}{\rm CMRR}.$$
 (3)

Из выражений (1) - (3) следует, что:

© CTA-ПРЕСС

Рис. 18. Зависимости V_{OS}, I_{BI}, I_{BN} от уровня синфазного напряжения (MM LT1055)

Рис. 21. Зависимости температурных коэффициентов TCV_{OS}, TCI_B от температуры (MM THS4011)

- при V_{CM} = 0 напряжение узла V_{os} тождественно равно напряжению V_{OS} смещения нуля тестируемой MM OУ;
- производная от узлового напряжения V(V₀₈) по V_{СМ} равна обратной величине коэффициента CMRR подавления синфазного сигнала MM ОУ на постоянном токе;
- выход ОУ DA1 из линейного режима работы возможен только по причине перегрузки его входного каскада синфазным сигналом, поскольку выходное напряжение ОУ в соответствии с формулой (1) близко к нулю.

Указанные на схеме узловые напряжения и токи ветвей, полученные в результате её анализа на постоянном токе при $V_{\rm CM} = 0$, позволяют определить величины напряжения V_{OS} и токов $I_{\rm Bl}, I_{\rm BN}$. Анализ схемы в режиме DC Sweep при вариации параметра $V_{\rm CM}$ и температуры позволяет построить графики зависимостей, перечень которых приведён в табл. 2.

На рис. 17 изображены зависимости V_{OS} , $I_{\rm BI}$, $I_{\rm BN}$ от синфазного напряже-

Рис. 19. Зависимости V_{OS} и I_B от температуры (MM LT1055)

ния, полученные в результате свипирования параметра $V_{\rm CM}$.

Диапазон изменения входного синфазного напряжения ММ ОУ ограничивается предельными величинами V_{CM MIN}, V_{CM MAX}, при достижении которых начинается резкое и значительное изменение величин напряжения V_{OS} смещения и/или входных токов I_{BI}, I_{BN}. На рис. 17 сносками указаны границы V_{CM MIN}, V_{СМ МАХ} диапазона изменения синфазного входного напряжения ММ CLC420/CL при размахе питающих напряжений V_S = 10 В. Следует отметить, что CLC420/CL является упрощённой ММ транзисторного уровня, которая корректно моделирует поведение ОУ при достижении синфазным напряжением обеих границ его допустимого диапазона. К сожалению, классические ММ Бойля и MPZ MM, а также их модификации, в которых используется простой входной дифференциальный каскад, моделируют только одну из предельных величин синфазного напряжения [1]. На рис. 18 хорошо видно, что MM LT1055 при V_s = 30 В имеет $V_{\text{CM MIN}} = -11,7$ В, а явные признаки, позволяющие определить величину VCM MAX, отсутствуют.

Опыт тестирования MM ОУ на предмет зависимости их статических параметров от температуры показал следующее:

 подавляющее большинство ММ с ВЈТ на входе не моделирует зависимость входных токов и напряжения смещения от температуры. Исключение составляют некоторые ММ транзисторного уровня, которые удовлетворительно моделируют зависимости I_{BI}, I_{BN}, V_{OS} от температуры; • все ММ с JFET на входе моделируют зависимости I_{BI}, I_{BN}, V_{OS} от температуры, однако точность моделирования указанных параметров нельзя считать приемлемой.

На рис. 19 изображены зависимости входного тока и напряжения смещения от температуры, полученные в результате тестирования MM OV LT1055 с JFET на входе.

Входной ток MM ОУ LT1055 при изменении температуры от 0 до 125°С увеличивается с 13,4 пА до 1.81 мкА. в то время как входной ток реального ОУ в тех же условиях возрастает от приблизительно с 4 до 500 пА [www.linear.com]. Из сказанного следует, что при температуре 125°С величины входного тока ММ и реального ОУ различаются приблизительно в 3600 раз! Совершенно очевидно, что результаты моделирования ММ LT1055 температурной зависимости тока I_В являются некорректными. Аналогичные результаты получаются и для других MM ОУ с JFET на входе. Более реалистично зависимости І_{ві}, $I_{\rm BN}, V_{\rm OS}$ от температуры моделируют MM LM6171A/NS, LM6172/NS, LM7171B/NS, а также MM транзисторного уровня серии THS40xx. В качестве примера на рис. 20 изображены зависимости напряжения смещения и входных токов ММ ТНS4011 от температуры, а на рис. 21 - температурные коэффициенты указанных зависимостей.

Продолжение следует

Литература

- Лозицкий С. Эволюция SPICE-совместимых макромоделей операционных усилителей. Современная электроника. 2005. №№ 4–6.
- Лозицкий С. Методы анализа операционных схем в частотной области. Схемотехника. 2004. №№ 7 – 12; 2005. №№ 1 – 5.
- Разевиг В.Д. Система сквозного проектирования электронных устройств DesignLab. М.: Солон, 1999.
- 4. *Разевиг В.Д.* Система проектирования OrCAD 9.2. М.: Солон, 2001.
- 5. Достал И. Операционные усилители: Пер. с англ. М.: Мир, 1982.
- 6. *Jung W.* LT1056 Improved JFET Op Amp Macromodel Slews Asymmetrically. Design Note DN43. Linear Technology Corporation, January 1991.

Новости мира News of the World

Kodak нашла нового партнёра по OLED – LG.Philips LCD

Компания LG.Philips LCD подписала соглашение с Eastman Kodak о совместных исследованиях и разработках в области технологии AMOLED.

LG уже сообщала о разработках OLED, но активности не проявляла. По мнению наблюдателей, для Kodak соглашение с LG Electronics – один из лучших вариантов партнёрства. Напомним, что на прошлой неделе компания Sanyo объявила о прекращении сотрудничества с Kodak по направлению OLED.

itc.ua

Sony и NEC создадут СП по выпуску дисков

Японские корпорации Sony и NEC подписали соглашение о сотрудничестве в области производства оптических дисков. Совместное предприятие будет называться Sony NEC Optiarc Inc. Руководителем новой компании станет Шиничи Ямамура, который до этого занимал пост вице-президента подразделения Video Business Group в корпорации Sony.

Регистрация нового предприятия будет завершена до 3 апреля текущего года. К тому моменту и Sony, и NEC выделят из своих структур подразделения, которые станут основой новой компании.

itware.com.ua

Samsung инвестирует в память и производство ЖКД

Samsung Electronics объявила, что инвестирует средства в разработку и развитие микросхем флэш-памяти и DRAM, а также в производство ЖКД.

Сумма инвестиций составит примерно 617,6 млрд. вон (свыше 635 млн. долл.): 388,2 млрд. вон будут направлены на исследование и развитие микросхем памяти, а остальные – на расширение производства экранов LCD малого и среднего размеров.

Samsung уже сообщала, что в 2006 г. объём её капитальных инвестиций составит 9,23 трлн. вон, в том числе 5,63 трлн. вон – на производство полупроводниковой продукции и 2,37 трлн. вон – на производство ЖКД.

itware.com.ua

Чипы NAND пришли на помошь рынку памяти

По оценкам аналитиков Gartner, доходы производителей микросхем оперативной памяти в прошлом году сократились, однако стабильный рост продаж флэшпамяти NAND несколько компенсировал снижение «оборотов» рынка DRAM.

Согласно подсчетам Gartner, доля Samsung на рынке микросхем DRAM по итогам 2005 г. составила 32,1%, что на 1,2% больше, чем в 2004 г.

На втором месте ещё один корейский производитель – Hynix, контролирующий 16,3% рынка. Далее в рейтинге крупнейших игроков на рынке DRAM, по подсчётам Gartner, следуют американская Micron и немецкая Infineon – они занимают доли соответственно 15,5 и 12,7%. Пятое место – за японской Elpida с рыночной долей 7,1%.

По данным аналитиков, доходы от продаж памяти DRAM в 2005 г. не увеличились, а уменьшились по сравнению с предыдущим годом на 5% – до 25 млрд. долл. (в 2004 г. – 26,3 млрд. долл.). В отчёте указывается, что от ещё большего падения доходов производителей спасла популярная флэш-память NAND, широко используемая в портативной электронике. Выпуском такой памяти пока занимаются только крупнейшие компании, что в некоторой мере защищает рынок от перепроизводства и максимального снижения цен.

itware.com.ua

Производство полупроводников: итоги и прогнозы

Нынешний год будет успешным для производителей полупроводниковой продукции, – считают эксперты рынка. По данным аналитической компании Gartner, общемировые продажи полупроводников достигнут 257,7 млрд. долл. Это на 9,5% больше, чем в прошлом году (235,3 млрд. долл.).

Исследователи IDC считают, что в этом году рынок вырастет на 8%, а доходы от продаж поставленных полупроводников превысят 240 млрд. долл. По подсчётам этой компании, в 2005 г. оборот общемирового рынка полупроводниковой продукции по сравнению с 2004 г. увеличился на 5%, составив около 224 млрд. долл.

Аналитическая компания Semico Research сообщает, что рынок полупроводников будет отличаться высоким ростом и за год его объём увеличится на 17,3%.

В то же время отраслевая ассоциация Semiconductor Industry Association предполагает, что в 2005–2008 гг. полупроводниковый рынок будет ежегодно увеличиваться в среднем на 10% и к 2008 г. дотигнет 309 млрд. долл.

itware.com.ua