Частотный метод анализа синтезаторной системы импульсно-фазовой автоподстройки частоты Часть З

Юрий Никитин (Санкт-Петербург)

В третьей части статьи приводится методика расчёта фильтрации помех кольцом АФАП с использованием конкретных примеров.

Для получения сетки частот используют различные системы синтеза частоты (ССЧ), в том числе и на основе колец импульсно-фазовой автоподстройки частоты (ИФАП). Полезным продуктом ССЧ является выходное колебание. Поэтому к основным техническим характеристикам ССЧ относят уровень дискретных побочных спектральных составляющих (ДПСС) и значение фазового шума в выходном колебании при различных отстройках от несущего (выходного) колебания. Расчёт фильтрации помех синтезаторной системой ИФАП сводится к определению требований к петлевому фильтру нижних частот (ФНЧ) при безусловном учёте исходных факторов и обеспечении требуемых характеристик выходного колебания. Часть исходных параметров для расчёта необходимо задавать - выходной ток частотно-фазового детектора (ЧФД), число звеньев петлевого фильтра, полосу пропускания петли ИФАП; часть берётся из справочников и описаний микросхем.

Обобщённая структурная схема синтезаторного квазиастатического кольца ИФАП (АФАП) показана на рисунке 1.

Исходные данные для расчёта кольца АФАП

Основные исходные данные для расчёта кольца АФАП следующие: • диапазон синтезируемых частот

- $F_{\text{BbIX}} = F_{\text{OUT}} = F_{\text{MUH}} ... F_{\text{MAKC}}; \Delta F = F_{\Delta} = F_{\text{MAKC}} F_{\text{MUH}};$
- шаг сетки синтезируемых частот $F_{\rm S}$;
- частота опорного колебания $F_{\text{ОКГ}} \equiv F_{\text{ТСХО}};$
- уровень дискретных ПСС, равных и кратных частоте сравнения в кольце D_{ПСС};
- распределение уровня фазового шума при различных отстройках от выходного колебания (при необходимости);
- желательная полоса прозрачности кольца (частота среза кольца F_{CP} или частота единичного усиления кольца);
- тип применяемой микросхемы АФАП и значение выходного тока ЧФД I₀.

Расчёт кольца заканчивают определением требований к петлевому

Рис. 1. Структурная схема синтезаторного квазиастатического кольца импульсно-фазовой автоподстройки частоты (АФАП)

ФНЧ – его АЧХ и ФЧХ – и, возможно, синтезом звеньев ФНЧ.

Значение выходной частоты можно определить по формуле:

$$F_{OUT} = \frac{N}{R} F_{TCXO}, \qquad (1)$$

где *N* и *R* – коэффициенты деления ДПКД и ДФКД соответственно.

Методику расчёта изложим с использованием двух примеров расчёта конкретных синтезаторных колец АФАП [1, 2]. Так, если нужно спроектировать гетеродин для приёмника базовой станции E-GSM900 880...915 МГц, при $F_{1\Pi\Psi}$ = 240 МГц и нижнем сопряжении получим диапазон синтезируемых частот $F_{BbIX} = F_{MUH}...F_{MAKC} =$ = 640...675 МГц и полосу перестройки ПГ $F_{\Delta 1} = F_{MAKC} - F_{MUH} = 35$ МГц. С учётом температурной нестабильности ПГ и ухода частоты вследствие старения элементов, частоту перестройки *F*[^] можно выбрать равной 40 МГц. Далее, в информационных материалах следует найти максимальную крутизну управляющей характеристики выбранного ПГ К_{V1МАКС}. Например, для генератора ROS-765 фирмы Mini-Circuits $K_{V MAKC} = 38 M \Gamma \mu / B$.

Для второго примера выберем октавный диапазон перестройки частоты в интервале от 900 МГц до 2150 МГц. Полосу перестройки $F_{\Delta 2}$ можно выбрать равной 1300 МГц. Максимальная крутизна управляющей характеристики ГУН типа ROS-2150VW фирмы Mini-Circuits составляет $K_{\rm V2~MAKC}$ = 82 МГц/В.

Основные технические параметры указанных генераторов приведены в таблице 1. Запись «дБн/Гц» означает, что уровень фазового шума нормирован к уровню несущего (выходного) колебания ГУН и полосе анализа 1 Гц. Для наших примеров выберем микросхему ФАПЧ типа ADF4118, обеспе-

Таблица 1. Основные технические параметры генераторов фирмы Mini-Circuits

Тип ПГ	Диапазон перестройки	Диапазон управляющего	Крутизна управляющего	Уровень фазового шума, дБн/Гц, при отстройке, кГц				
	<i>F</i> _{ВЫХ} , МГц	напряжения <i>Е</i> _v , В	напряжения <i>К</i> _V , МГц/В	1	10	100	1000	
R0S-765	445800	117	3811	-74	-95	-115	-135	
R0S-2150VW	9502150	0,525	8233	-70	-96	-118	-138	

Таблица 2. Исходные параметры и результаты предварительных расчётов двух вариантов синтезаторных колец АФАП

№ варианта	ианта Полоса перестройки Шаг сетки F_{Δ} , МГц F_{S} , кГц		Коэффициент деления ДПКД, <i>N</i>	Полоса удержания <i>F</i> _v , кГц	Выходной ток ЧФД, мА	Размах выходного напряжения ЧФД Е _Д , В	Размах управляющего напряжения <i>E</i> _V , В	
1	40	200	2200 2275	11.9 12.5	1	0.25 4.75	6.05	
2	04	200	52005575	11,012,5	0,25		09,5	
	1300	200	450010 750	121289	1	0,204,70	0,520	
					0,25			

чивающую выходной ток ЧФД I_0 =±1 мА или I_0 =±250 мкА.

Предварительный расчёт

В таблицу 2 сведём исходные параметры и результаты предварительных расчётов по двум вариантам синтезаторных колец АФАП:

вариант 1 – диапазон частот 640...675 МГц;

вариант 2 – диапазон частот 900...2150 МГц.

Коэффициент деления *N* тракта приведения частоты ГУН:

$$N = \frac{F_{OUT}}{F_{REF}} \,. \tag{2}$$

Приведённая к частоте сравнения полоса удержания (перестройки) ПГ:

$$F_{V} = \frac{F_{\Delta}}{N}.$$
 (3)

Далее построим асимптотические логарифмические АЧХ для полосы перестройки ПГ и его полосы удержания рисунок 2 и рисунок 3 соответственно. Графики на рисунке 2 показывают, во сколько раз ПГ будет усиливать помеху, приходящую (просачивающуюся) на его управляющий вход. Например, при полосе перестройки ПГ F_{Δ} = $= K_V E_V = 40$ МГц и частоте помехи $F_{\Pi} =$ = 1 кГц кольцо усилит помеху в K_{Π} = = F_{Δ}/F_{Π} = 40 000 раз, т.е. на 92 дБ. Вот почему так важны грамотная разводка цепей управления ПГ и их экранирование прежде всего от низкочастотных помех, а также эффективная фильтрация помех по цепям питания.

Изодромное звено

Изодромным звеном условимся считать выходную цепь накачки заряда (Charge Pump) ЧФД, которая подсоединена к общей (земляной) шине через резистор R_{ИЗ} и конденсатор С_{ИЗ}. Эквивалентная схема выходной цепи ЧФД и изодромного звена приведена на рисунке 4. Выходная цепь Charge Pump заменена генератором тока, потому что выходные ключи ЧФД практически весь период частоты сравнения находятся в разомкнутом состоянии, обеспечивая малые токи утечки.

После анализа приведённой на рисунке 4 эквивалентной схемы можно записать:

$$E_{II} = \left| I_0 \right| \left(R_I + \frac{1}{j \omega C_I} \right)$$

или

$$K_D^I = \frac{E_D}{|I_0|} = \frac{1 + j\omega T_I}{j\omega C_I}, \qquad (4)$$

где $R_{\rm H3} \equiv R_{\rm I}C_{\rm H3} \equiv C_{\rm I}; T_{\rm I} = R_{\rm I}C_{\rm I} -$ постоянная времени изодромного звена.

Если представить выходной ток детектора в виде $I_0 = E_{\rm Д}/(2R_0)$, где $E_{\rm Д}$ – размах управляющего напряжения на выходе Charge Pump ЧФД, R_0 – внутреннее сопротивление открытого ключа Charge Pump, можно переписать выражение (4) в более удобном, безразмерном виде:

$$K_{D}^{E} = \frac{E_{D}}{E_{0}} = \frac{1 + j\omega T_{I}}{j\omega T_{D}} = \frac{T_{I}}{T_{D}} + \frac{1}{j\omega T_{D}}, \quad (5)$$

где $T_{\rm D} = R_0 C_{\rm I}$ – постоянная времени интегратора ЧФД. На практике напряжение $E_{\rm Д}$ меньше напряжения питания Charge Pump на 5...10%.

На рисунке 5 показана асимптотическая ЛАХ системы «Генератор подкачки заряда (Charge Pump) – изодромное звено», где $F_{\rm H3} = 1/T_{\rm H3} =$ = $1/(2\pi R_{\rm H3} C_{\rm H3}); F_{\rm Д} = 1/T_{\rm Д} =$ $1/(2\pi R_{\rm H3} C_{\rm H3}).$

Рис. 2. Полоса перестройки F_{Δ} ПГ для варианта 1 таблицы 2

Рис. З. Приведённая максимальная полоса удержания F_V для варианта 2 таблицы 2

Рис. 4. Эквивалентная схема выхода ЧФД Charge Pump и изодромного звена петлевого ФНЧ

Рис. 5. Асимптотическая ЛАХ изодромного звена

Рис. 6. Построение ЛАХ астатического бесфильтрового кольца с частотой среза F* для варианта 2 таблицы 2

Рис. 7. Вариант построения «интегрированного» изодромного звена и петлевого ФНЧ

Построение ЛАХ

При построении ЛАХ кольца АФАП удобно разделить ЛАХ изодромного звена на две части – ЛАХ идеального интегратора с частотой среза *F*_Д и ЛАХ дифференцирующего звена с частотой среза *F*_{ИЗ}.

Частоту F_D будем считать частотой среза (частотой единичного усиления) ЧФД. Заметим, что постоянная времени ЧФД $T_{\rm Д} = R_0 C_{\rm H3}$ зависит как от выходного тока ЧФД, так и от значения ёмкости изодромного звена $C_{\rm H3}$.

Далее, на ЛАХ «ПГ-интегратор» (см. рис. 3) строим ЛАХ «ЧФД-интегратор» и их суммарную ЛАХ, которая будет иметь отрицательный двойной наклон 40 дБ/дек (см. рисунок 6). Не следует забывать, что набег фазы одиночного интегратора равен $-\pi/2$, а у идеального двойного интегратора он составляет $-\pi$. Вот почему необходимо введение изодромного (дифференцирующего) звена для сохранения устойчивости кольца.

Отметим и тот факт, что для конкретного коэффициента деления N точка F_V зафиксирована, в то время как точку $F_{\rm D}$ можно двигать, изменяя величину постоянной времени Тл. Соответственно, будет двигаться и точка F_A. Излом дифференцирующего (изодромного) звена вводят для обеспечения запаса по фазе на частоте среза F_{CP}. Поскольку частота среза (единичного усиления) F_{CP} кольца АФАП изменяется в зависимости от значения N, то наихудшее соотношение между частотой среза F_{CP} и частотой сравнения F_S будет при минимальном значении коэффициента N_{MIN}. Это означает, что при минимальном N частота F_{CP} максимальна и наиболее близка к F_S. Поэтому введение петлевого фильтра вызовет наибольший набег фазы на частоте среза кольца $F_{\rm CP}$ и, соответственно, уменьшит запас по фазе. К тому же требования к петлевому фильтру в этом случае будут наиболее жёсткими.

Из теории систем автоматического регулирования известно [3], что для обеспечения монотонности переходного процесса и приемлемого коэффициента колебательности (перерегулирования) M желательно не иметь изломов ЛАХ, расположенных на расстоянии $G_N^{H} = +14...20$ дБ и $G_N^{H} = -3...8$ дБ от оси абсцисс, т.е. в интервале коэффициентов передачи $G_N(\omega)$ разомкнутой петли H = +(14...20)... –(3...8) дБ.

Поскольку

$$F_A = \sqrt{F_D F_V} , \qquad (6)$$

для частоты излома дифференцирующего звена можно записать

$$F_I^{II} = \frac{F_A}{\sqrt{H}}$$

И

$$F_D = \frac{F_{CP}^2}{HF_V},\tag{7}$$

где $F_{CP} = F_I^{II} H$.

Для расчётов удобно воспользоваться следующей формулой:

$$\frac{F_{CP}}{F_D} = \frac{F_V}{F_I} \,. \tag{8}$$

Когда частота излома изодромного звена расположена, например, на уровне H = 14 дБ, можно записать:

$$F_I^{14} = \frac{F_A}{\sqrt{5}} = \frac{F_A}{2,236} = 0,447 F_A, \quad (9)$$

а частоту среза (единичного усиления) кольца АФАП вычислить как

$$F_{CP}^{14} = F_I^{14} \times 5. \tag{10}$$

Заметим, что частоту $F_{\rm CP}$ мы выбираем самостоятельно, полагаясь на интуицию и опыт. Неоднозначное толкование допускает и выбор частоты среза $F_{\rm II}$ ЧФД [4].

Далее, в справочных данных на синтезатор находим значения тока утечки ключей Charge Pump и токов утечки элементов обвязки цепи управления частотой ГУН - прежде всего, буферного усилителя постоянного тока на ИОУ. Например, ток утечки Charge Pump микросхемы ADF4118 не превышает $I_{CP} = 1$ нА, а входной ток ИОУ типа AD820 не превышает 25 пА в рабочем диапазоне температур. Током утечки конденсатора изодромного звена можно пренебречь из-за его малости, однако не следует пренебрегать шумом конденсатора изодромного звена. При значении выходного тока ЧФД I0 = 250 мкА подавление помех с частотой сравнения $F_{\rm S}$ в ЧФД составит не менее $I_{\rm CP}/I_0$ = = 108 дБ.

Петлевой фильтр

Бесфильтровое кольцо усиливает помеху, приходящую с управляющим напряжением, вследствие высокой крутизны *K*_V ПГ. В нашем примере

PWD-433 универсальные радиомодули Фаствел

Характеристики PWD-433

- Диапазон частот: 430...435 МГц
- Максимальная мощность передачи: 10 дБм
- Чувствительность приёмника: –100 Дб
- Радиус действия: до 250 м
- Скорость передачи до 50 кбит/с (по радиоканалу)
- Индустриальный диапазон рабочих температур (-40...+85°C)
- Манчестерское кодирование сигнала
- Сквозное шифрование передаваемых данных
- Интерфейсы: USB/RS-232/UART
- Управление АТ-командами
- 4 аналоговых входа (разрешение АЦП 12 бит)
- 4 цифровых входа/выхода (нагрузка до 10 мА на вывод)
- Встроенный контроллер 8051 с возможностью программирования через JTAG

Типичные применения модулей PWD-433

- Автономные беспроводные датчики
- Системы дистанционного управления и контроля
- Беспроводные сети для передачи данных
- Системы «умный дом»
- Пожарно-охранная сигнализация

Доступен стартовый набор, а также программноаппаратные средства для разработки и отладки встроенного ПО

Реклама

PROSOFT В ПРОСОФТ — АКТИВНЫЙ КОМПОНЕНТ ВАШЕГО БИЗНЕСА Телефон: (495) 232-2522 • E-mail: info@prochip.ru • Web: www.prochip.ru

Рис. 8. Построение ЛАХ астатического кольца с частотой среза F_{CP} и *п*-звенным ФНЧ для варианта 2 таблицы 2

(строка 1 в таблице 2) помеха будет усилена в 40 МГц/200 кГц = 200 раз, или на 46 дБ. В итоге уровень дискретной ПСС с частотой 200 кГц на выходе кольца не превысит -108 + 46 = -62 дБн.

В широкополосном синтезаторе (строка 2 в таблице 2) помеха будет усилена на 76 дБ в нижней точке диапазона. Поэтому уровень дискретных ПСС на его выходе составит всего – 32 дБн.

Следовательно, в широкополосном кольце необходима дополнительная фильтрация помех петлевым ФНЧ. Если обратиться к рисунку 4 и формуле (5), можно увидеть виртуальный резистор R_0 . Подключение к выходу E_d дополнительного конденсатора C_0 позволяет реализовать R_C -звено ФНЧ с частотой среза $F_0 = 1/(2\pi R_0 C_0)$ (см. рисунок 7).

Изодромное звено можно «нагрузить» дополнительным ФНЧ. Следует лишь проследить за тем, чтобы сопротивление R_1 превышало значение $R_{\rm H3}$ не менее чем в 3...5 раз. Ошибка расчёта при этом не превысит 4...10%. Отметим, что при определении постоянных времени $T_{\rm H3}$ изодромного звена и $T_{\rm H}$ ЧФД под ёмкостью $C_{\rm H3}$ следует понимать сумму емкостей, подключенных к выходу ЧФД.

Частоты изломов $F_{\Pi\Phi}$ звеньев петлевого фильтра желательно располагать вне «охранной» зоны H == -3...8 дБ во избежание коэффициентов перерегулирования $M \ge 1,2$ при переключении частоты. Также не следует забывать, что фильтрация помех в импульсном кольце ФАП прекращается на половинной частоте сравнения.

Результаты расчёта исходных вариантов колец АФАП для наихудшей точки (при максимальной крутизне ПГ и минимальном коэффициенте деления ДПКД) сведём в таблицу 3. Существуют два равноценных подхода к проектированию петлевого фильтра кольца АФАП. В первом случае разработчик задаёт частоту среза кольца F_{CP} и допустимый фазовый сдвиг в петле, т.е. набег фазы на частоте F_{CP} . Обычно выбирают суммарный фазовый сдвиг на частоте среза кольца $\approx 60^{\circ}$ [1, 3]. Учитывая, что

$$\begin{split} D_{II\Phi} &= n \times 20 Ig \frac{F_S}{2 \times F_{II\Phi}}, \\ \phi_{H3} &= arctg \frac{F_{H3}}{F_{CP}}, \\ \phi_{II\Phi} &= n \, arctg \frac{F_{CP}}{F_{II\Phi}}, \end{split}$$

а $\phi_{\text{ИНТ}} = -\pi/2 = \text{сопst}$ и должно выполняться условие:

$$\varphi_{\rm M3} + \varphi_{\rm \Pi\Phi} \le \pi/2 - \Delta\varphi, \qquad (11)$$

где $\Delta \varphi$ – запас по фазе на частоте среза $F_{\rm CP}$, получим условие для определения дополнительной фильтрации DПФ помех с частотой сравнения $F_{\rm S}/2$ *n*-звенным петлевым фильтром при выполнении заданных условий устойчивости

$$D_{H\Phi} \left[\mathsf{qB} \right] = 20 \, lg \left(\frac{F_S}{2 F_{CP}} lg \frac{\varphi}{n} \right). \tag{12}$$

При таком подходе устойчивость кольца гарантирована, а величину дополнительной фильтрации помехи с частотой сравнения $F_{\rm S}$ ($F_{\rm S}/2$) и её гармоник рассчитывают по формулам (8) – (12). Возможное число звеньев петлевого фильтра приведено в таблице 4. Отметим лишь, что коэффициент передачи *RC*-ФНЧ вычисляют по формуле:

$$K_{\Pi\Phi} = (1 + \omega^2 T^2)^{-1/2} = 1/\mathcal{A}_{\Pi\Phi},$$

где $\mathcal{A}_{\Pi\Phi}$ – коэффициент подавления помех петлевым фильтром (B/B) в децибелах. Подавление однозвенным *RC*-фильтром помех с частотой сравнения составит:

$$D_{II\Phi} = 20 lg \left(\sqrt{1+} \frac{F_S^2}{F_{\Pi\Phi}^2} \right). \label{eq:DII}$$

Заметим, что в таблице 4 однозвенный петлевой ФНЧ с набегом фазы на частоту среза кольца ≈60° не обеспечивает сохранения выбранного значения *F*_{CP}.

При втором подходе разработчик задаёт значение $D_{\Pi\Phi}$ требуемого (дополнительного) подавления кольцом (точнее, петлевым фильтром кольца) помехи с частотой сравнения (шага сетки) F_S и определяет частоту среза кольца F_{CP} . Для варианта реализации петлевого фильтра с фиксированным коэффициентом подавления $D_{\Pi\Phi}$ и безусловным обеспечением запаса по фазе можно получить выражение для расчёта частоты среза кольца АФАП:

$$F_{CP} = \frac{10^n}{2/l_{H\Phi}} F_S t g \frac{\varphi}{n}.$$
 (13)

Наконец, при переключении синтезируемой частоты показатель колебательности *M* не превысит заданно-

Таблица З.	Результаты	расчёта	исходных	вариантов	колец	АФАП	для	наихудшей	точки
------------	------------	---------	----------	-----------	-------	------	-----	-----------	-------

	№ варианта	<i>F</i> _V , кГц	<i>F</i> _Д , Гц	<i>F</i> _{ИЗ} , кГц	<i>F</i> _{CP} , кГц	Запас по фазе на частоте F _{CP}		
	1	11,85	$F_{\rm D}^{14} = 6751$	$F_{l}^{14} = 4$ $F_{l}^{20} = 2$	20			
			$F_{\rm D}^{20} = 3375$			C09		
	0	120,93	$F_{\rm D}^{14} = 661$			00		
	<u><</u>		$F_{\rm D}^{20} = 331$					

Таблица 4. Результаты расчёта параметров петлевого фильтра

№ варианта	<i>F</i> _{СР} , кГц	Уровень излома Н изодромного звена, дБ	Фазовый сдвиг от излома <i>H</i> на частоту F _{CP} , °	Число звеньев <i>п</i> петлевого фильтра	<i>F</i> _{ПФ} , Гц	Подавление петлевым фильтром частоты <i>F</i> _S /2, дБ
	20	14	11,3	1	17 570	15,23
				2	44 192	15,73
				3	68 691	14,82
				4	92 700	13,41
- 1				5	116 515	11,98
1		20	5,71	1	14 371	16,94
				2	39 000	17,58
				3	61 190	16,94
				4	82 828	15,62
				5	104 270	14,16

го значения, если запас по фазе на частоте сравнения составит не менее

$$\Delta \Psi = \arccos \frac{M}{2} \tag{14}$$

в том интервале частот, где

$$20 lg \frac{M}{M+1} \le H(\omega) \le 20 lg \frac{M}{M-1}, (15)$$

т.е. в указанном диапазоне частот ФЧХ не должна заходить в область графика, ограниченную прямой -180° и кривой $-180^{\circ} + \Delta \Psi$.

При использовании буферного усилителя целесообразно, во-первых, разделить звенья петлевого ФНЧ, поместив их как до, так и после ИОУ; вовторых, реализовать на ИОУ усилитель постоянного тока с требуемым коэффициентом передачи; в-третьих, по возможности минимизировать этот коэффициент. Например, при построении узкополосного синтезатора целесообразно предусмотреть цепь постоянного смещения, чтобы ограничить коэффициент передачи петлевого фильтра по постоянному току минимальным значением.

Обычно полученных в результате расчёта результатов достаточно для получения представления об основных параметрах проектируемого кольца АФАП. Для более детального построения характеристики распределения фазового шума в спектре выходного колебания необходимо располагать исходными характеристиками ОКГ и ПГ и, последовательно сдвигая частоту среза кольца, получить желательную результирующую характеристику.

Как правило, при расчёте кольца АФАП с ДДПКД приходится существенно корректировать параметры петлевого фильтра для обеспечения требуемого подавления помех дробности и сохранения устойчивости кольца во всём диапазоне изменения коэффициента деления *N* (см. рисунок 8).

Заключение

Описанные в статье частотные методы анализа и синтеза синтезаторных колец фазовой автоподстройки частоты позволяют при минимальных затратах времени и средств оценивать фильтрующие свойства проектируемых колец и строить АФАП с требуемыми характеристиками.

Литература

- 1. Шапиро Д.Н., Паин А.А. Основы теории синтеза частот. Радио и связь, 1981.
- Рыжков А.В., Попов В.Н. Синтезаторы частот в технике радиосвязи. Радио и связь, 1991.
- Макаров И.М., Менский Б.М. Линейные автоматические системы. Машиностроение, 1977.
- *Гуревич И.Н., Зарецкий М.М., Никитин ЮА.* Анализ и расчет фильтрации помех астатической системой ФАП. Электросвязь. 1994. № 8. С. 8–10.

Новости мира News of the World Новости мира

IBM исследует электрическую плотность нанотрубок

Группа исследователей Watson Research Center, принадлежащего корпорации IBM, объявила о разработке технологии, позволяющей измерять распределение электрического заряда на углеродной трубке, диаметр которой не превышает 2 нм. Разработанная технология отражает глубину теоретического и практического понимания процессов, происходящих на наноуровне, и приблизит эру практического применения углеродных нанотрубок в микросхемах.

Предложенная техника измерения основывается на взаимодействии между электронами и фононами. Фононы или кванты колебательных движений атомов кристалла описывают величину «атомной вибрации», которая может определять термическую и электрическую проводимость вещества. В свою очередь, электроны являются переносчиками заряда и порождают электрический ток. Оба свойства могут стать основой для математических вычислений. Во время исследования использовали явление, известное под названием комбинационного рассеяние света (эффект Рамана). Смысл последнего заключается в появлении в спектрах рассеянного света дополнительных линий, частота которых является комбинацией частоты первичного светового пучка и вращательной частоты (атомной вибрации) молекул вещества. Изменения частотных составляющих рассеянного светового пучка (его цвет, в первом приближении) свидетельствовали об изменении электрической плотности конкретного участка нанотрубки.

По мнению многих аналитиков, наноскопические углеродные трубки является многообещающим материалом для строительства компактных и экономичных чипов, которые неизбежно придут на смену современным кремниевым микросхемам. Однако, для того чтобы ввести углеродные нанотрубки в практическое применение, разработчики должны сначала продемонстрировать высокую скорость, высокую плотность записи и низкое энергопотребление наноэлектрических схем, равно как и возможность их массового производства.

semiconductor.net

Seiko Epson выйдет на рынок OEL-панелей

Компания Seiko Epson сообщает о планах выхода на рынок органических электролюминесцентных (OEL) панелей, причём не последнюю роль в этом решении сыграла жёсткая конкуренция на рынке жидкокристаллических телевизионных панелей. При этом успешно противостоять ЖК-дисплеям и плазменным панелям OEL-устройства смогут благодаря увеличенному времени жизни, чего исследователям совсем недавно удалось добиться. Так, стандартное время жизни OEL-панелей составляет 30 тыс. ч, тогда как аналогичный показатель для ЖКрешений и «плазмы» составляет 60 тыс. Теперь же эти цифры увеличены до значения 50 тыс. ч, и «органические» панели вплотную приблизились к конкурентам.

Однако у OEL-устройств есть и свои сильные стороны: невысокое энергопотребление, лучшая яркость и угол обзора в 180 градусов, чем не могут похвастать ЖК-панели. Ещё одной особенностью указанных устройств является компактность – Seiko Epson планирует в скором времени начать изготовление бизнес-мониторов с диагональю восемь дюймов, толщина которых составляет всего 2,8 мм. Эта особенность возможна благодаря отсутствию необходимости в использовании системы подсветки панели.

Но и конкуренты не желают отставать от Seiko Epson – известно, что компания Sony в начале декабря начнёт поставки первых OLED-дисплеев, стоимость которых составляет \$1700. Однако жидкокристаллические панели не собираются сдавать позиции – корпорация Sharp сообщила о разработке 52-дюймовой ЖКпанели толщиной всего два сантиметра. *physorg.com*